改进主题模型源代码摘要

P. McBurney, Cheng Liu, Collin McMillan, Tim Weninger
{"title":"改进主题模型源代码摘要","authors":"P. McBurney, Cheng Liu, Collin McMillan, Tim Weninger","doi":"10.1145/2597008.2597793","DOIUrl":null,"url":null,"abstract":"In this paper, we present an emerging source code summarization technique that uses topic modeling to select keywords and topics as summaries for source code. Our approach organizes the topics in source code into a hierarchy, with more general topics near the top of the hierarchy. In this way, we present the software's highest-level functionality first, before lower-level details. This is an advantage over previous approaches based on topic models, that only present groups of related keywords without a hierarchy. We conducted a preliminary user study that found our approach selects keywords and topics that the participants found to be accurate in a majority of cases.","PeriodicalId":6853,"journal":{"name":"2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)","volume":"26 29","pages":"291-294"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Improving topic model source code summarization\",\"authors\":\"P. McBurney, Cheng Liu, Collin McMillan, Tim Weninger\",\"doi\":\"10.1145/2597008.2597793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an emerging source code summarization technique that uses topic modeling to select keywords and topics as summaries for source code. Our approach organizes the topics in source code into a hierarchy, with more general topics near the top of the hierarchy. In this way, we present the software's highest-level functionality first, before lower-level details. This is an advantage over previous approaches based on topic models, that only present groups of related keywords without a hierarchy. We conducted a preliminary user study that found our approach selects keywords and topics that the participants found to be accurate in a majority of cases.\",\"PeriodicalId\":6853,\"journal\":{\"name\":\"2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)\",\"volume\":\"26 29\",\"pages\":\"291-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597008.2597793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597008.2597793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

在本文中,我们提出了一种新兴的源代码摘要技术,该技术使用主题建模来选择关键字和主题作为源代码摘要。我们的方法将源代码中的主题组织到一个层次结构中,更一般的主题位于层次结构的顶部。通过这种方式,我们首先呈现软件的最高级别功能,然后才是较低级别的细节。这比以前基于主题模型的方法更有优势,因为主题模型只显示相关关键字组,没有层次结构。我们进行了初步的用户研究,发现我们的方法选择的关键词和主题,参与者发现在大多数情况下是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving topic model source code summarization
In this paper, we present an emerging source code summarization technique that uses topic modeling to select keywords and topics as summaries for source code. Our approach organizes the topics in source code into a hierarchy, with more general topics near the top of the hierarchy. In this way, we present the software's highest-level functionality first, before lower-level details. This is an advantage over previous approaches based on topic models, that only present groups of related keywords without a hierarchy. We conducted a preliminary user study that found our approach selects keywords and topics that the participants found to be accurate in a majority of cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信