{"title":"分数阶系统的Riemann-Liouville导数稳定性分析","authors":"Zhiquan Qin, R. Wu, Yanfen Lu","doi":"10.1080/21642583.2013.877857","DOIUrl":null,"url":null,"abstract":"In this paper, the stability of fractional-order systems with the Riemann–Liouville derivative is discussed. By applying the Mittag-Leffler function, generalized Gronwall inequality and comparison principle to fractional differential systems, some sufficient conditions ensuring stability and asymptotic stability are given.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"24 1","pages":"727 - 731"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Stability analysis of fractional-order systems with the Riemann–Liouville derivative\",\"authors\":\"Zhiquan Qin, R. Wu, Yanfen Lu\",\"doi\":\"10.1080/21642583.2013.877857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the stability of fractional-order systems with the Riemann–Liouville derivative is discussed. By applying the Mittag-Leffler function, generalized Gronwall inequality and comparison principle to fractional differential systems, some sufficient conditions ensuring stability and asymptotic stability are given.\",\"PeriodicalId\":22127,\"journal\":{\"name\":\"Systems Science & Control Engineering: An Open Access Journal\",\"volume\":\"24 1\",\"pages\":\"727 - 731\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering: An Open Access Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2013.877857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2013.877857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability analysis of fractional-order systems with the Riemann–Liouville derivative
In this paper, the stability of fractional-order systems with the Riemann–Liouville derivative is discussed. By applying the Mittag-Leffler function, generalized Gronwall inequality and comparison principle to fractional differential systems, some sufficient conditions ensuring stability and asymptotic stability are given.