在开放世界中识别f -阵型

Hooman Hedayati, D. Szafir, Sean Andrist
{"title":"在开放世界中识别f -阵型","authors":"Hooman Hedayati, D. Szafir, Sean Andrist","doi":"10.1109/HRI.2019.8673233","DOIUrl":null,"url":null,"abstract":"A key skill for social robots in the wild will be to understand the structure and dynamics of conversational groups in order to fluidly participate in them. Social scientists have long studied the rich complexity underlying such focused encounters, or $\\pmb{F}$-formations. However, current state-of-the-art algorithms that robots might use to recognize F-formations are highly heuristic and quite brittle. In this report, we explore a data-driven approach to detect F-formations from sets of tracked human positions and orientations, trained and evaluated on two openly available human-only datasets and a small human-robot dataset that we collected. We also discuss the potential for further computational characterization of F-formations beyond simply detecting their occurrence.","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"19 1","pages":"558-559"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Recognizing F-Formations in the Open World\",\"authors\":\"Hooman Hedayati, D. Szafir, Sean Andrist\",\"doi\":\"10.1109/HRI.2019.8673233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key skill for social robots in the wild will be to understand the structure and dynamics of conversational groups in order to fluidly participate in them. Social scientists have long studied the rich complexity underlying such focused encounters, or $\\\\pmb{F}$-formations. However, current state-of-the-art algorithms that robots might use to recognize F-formations are highly heuristic and quite brittle. In this report, we explore a data-driven approach to detect F-formations from sets of tracked human positions and orientations, trained and evaluated on two openly available human-only datasets and a small human-robot dataset that we collected. We also discuss the potential for further computational characterization of F-formations beyond simply detecting their occurrence.\",\"PeriodicalId\":6600,\"journal\":{\"name\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"volume\":\"19 1\",\"pages\":\"558-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HRI.2019.8673233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

野外社交机器人的一项关键技能将是理解对话群体的结构和动态,以便流畅地参与其中。长期以来,社会科学家一直在研究这种集中相遇(或称为“$\pmb{F}$”)背后的丰富复杂性。然而,目前机器人用来识别f型队形的最先进算法是高度启发式的,而且相当脆弱。在本报告中,我们探索了一种数据驱动的方法,从跟踪的人类位置和方向集中检测f形,并在两个公开可用的仅人类数据集和我们收集的小型人类-机器人数据集上进行了训练和评估。我们还讨论了进一步计算表征f -地层的潜力,而不仅仅是检测它们的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing F-Formations in the Open World
A key skill for social robots in the wild will be to understand the structure and dynamics of conversational groups in order to fluidly participate in them. Social scientists have long studied the rich complexity underlying such focused encounters, or $\pmb{F}$-formations. However, current state-of-the-art algorithms that robots might use to recognize F-formations are highly heuristic and quite brittle. In this report, we explore a data-driven approach to detect F-formations from sets of tracked human positions and orientations, trained and evaluated on two openly available human-only datasets and a small human-robot dataset that we collected. We also discuss the potential for further computational characterization of F-formations beyond simply detecting their occurrence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信