基于神经自适应禁忌搜索混合算法的管道泄漏检测

S. Sornmuang, J. Suwatthikul, S. Thirachai
{"title":"基于神经自适应禁忌搜索混合算法的管道泄漏检测","authors":"S. Sornmuang, J. Suwatthikul, S. Thirachai","doi":"10.1109/ICCAS.2014.6987836","DOIUrl":null,"url":null,"abstract":"This paper presents a new hybrid of Neural-Adaptive Tabu Search (NATS) for leakage detection in pipelines. The proposed cooperative algorithms are formed from Artificial Neural Network (ANN) and Adaptive Tabu Search (ATS). The article shows comparison studies of the ANN and NATS algorithms. The search performance evaluation is performed on the standard benchmark from University of California at Irvine (UCI) Machine Learning Repository. The experiment uses water leakage signals from a field-test yard. The results show that the leaking pipeline can be efficiently detected.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"16 6","pages":"531-534"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leak detection of pipeline using a hybrid of Neural-Adaptive Tabu Search algorithm\",\"authors\":\"S. Sornmuang, J. Suwatthikul, S. Thirachai\",\"doi\":\"10.1109/ICCAS.2014.6987836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new hybrid of Neural-Adaptive Tabu Search (NATS) for leakage detection in pipelines. The proposed cooperative algorithms are formed from Artificial Neural Network (ANN) and Adaptive Tabu Search (ATS). The article shows comparison studies of the ANN and NATS algorithms. The search performance evaluation is performed on the standard benchmark from University of California at Irvine (UCI) Machine Learning Repository. The experiment uses water leakage signals from a field-test yard. The results show that the leaking pipeline can be efficiently detected.\",\"PeriodicalId\":6525,\"journal\":{\"name\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"volume\":\"16 6\",\"pages\":\"531-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2014.6987836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的神经自适应禁忌搜索(NATS)混合方法用于管道泄漏检测。本文提出的协同算法由人工神经网络(ANN)和自适应禁忌搜索(ATS)组成。本文对人工神经网络和NATS算法进行了比较研究。搜索性能评估是在加州大学欧文分校(UCI)机器学习存储库的标准基准上进行的。该实验使用了来自现场测试场的漏水信号。结果表明,该方法可以有效地检测管道泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leak detection of pipeline using a hybrid of Neural-Adaptive Tabu Search algorithm
This paper presents a new hybrid of Neural-Adaptive Tabu Search (NATS) for leakage detection in pipelines. The proposed cooperative algorithms are formed from Artificial Neural Network (ANN) and Adaptive Tabu Search (ATS). The article shows comparison studies of the ANN and NATS algorithms. The search performance evaluation is performed on the standard benchmark from University of California at Irvine (UCI) Machine Learning Repository. The experiment uses water leakage signals from a field-test yard. The results show that the leaking pipeline can be efficiently detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信