走向最优结肠试验

Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, Yun Lin
{"title":"走向最优结肠试验","authors":"Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, Yun Lin","doi":"10.1145/3180155.3180177","DOIUrl":null,"url":null,"abstract":"Concolic testing integrates concrete execution (e.g., random testing) and symbolic execution for test case generation. It is shown to be more cost-effective than random testing or symbolic execution sometimes. A concolic testing strategy is a function which decides when to apply random testing or symbolic execution, and if it is the latter case, which program path to symbolically execute. Many heuristics-based strategies have been proposed. It is still an open problem what is the optimal concolic testing strategy. In this work, we make two contributions towards solving this problem. First, we show the optimal strategy can be defined based on the probability of program paths and the cost of constraint solving. The problem of identifying the optimal strategy is then reduced to a model checking problem of Markov Decision Processes with Costs. Secondly, in view of the complexity in identifying the optimal strategy, we design a greedy algorithm for approximating the optimal strategy. We conduct two sets of experiments. One is based on randomly generated models and the other is based on a set of C programs. The results show that existing heuristics have much room to improve and our greedy algorithm often outperforms existing heuristics.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"19 1","pages":"291-302"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Towards Optimal Concolic Testing\",\"authors\":\"Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, Yun Lin\",\"doi\":\"10.1145/3180155.3180177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concolic testing integrates concrete execution (e.g., random testing) and symbolic execution for test case generation. It is shown to be more cost-effective than random testing or symbolic execution sometimes. A concolic testing strategy is a function which decides when to apply random testing or symbolic execution, and if it is the latter case, which program path to symbolically execute. Many heuristics-based strategies have been proposed. It is still an open problem what is the optimal concolic testing strategy. In this work, we make two contributions towards solving this problem. First, we show the optimal strategy can be defined based on the probability of program paths and the cost of constraint solving. The problem of identifying the optimal strategy is then reduced to a model checking problem of Markov Decision Processes with Costs. Secondly, in view of the complexity in identifying the optimal strategy, we design a greedy algorithm for approximating the optimal strategy. We conduct two sets of experiments. One is based on randomly generated models and the other is based on a set of C programs. The results show that existing heuristics have much room to improve and our greedy algorithm often outperforms existing heuristics.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"19 1\",\"pages\":\"291-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3180177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

Concolic测试集成了具体执行(例如,随机测试)和生成测试用例的符号执行。有时,它被证明比随机测试或符号执行更具成本效益。concolic测试策略是一个函数,它决定何时应用随机测试或符号执行,如果是后一种情况,则决定哪条程序路径符号执行。人们提出了许多基于启发式的策略。什么是最优的结肠测试策略仍然是一个悬而未决的问题。在这项工作中,我们为解决这个问题做出了两方面的贡献。首先,我们证明了最优策略可以根据规划路径的概率和约束求解的代价来定义。然后将最优策略的识别问题简化为带成本的马尔可夫决策过程的模型检验问题。其次,针对最优策略识别的复杂性,设计了一种贪心算法来逼近最优策略。我们进行了两组实验。一个是基于随机生成的模型,另一个是基于一组C程序。结果表明,现有的启发式算法有很大的改进空间,我们的贪心算法往往优于现有的启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Optimal Concolic Testing
Concolic testing integrates concrete execution (e.g., random testing) and symbolic execution for test case generation. It is shown to be more cost-effective than random testing or symbolic execution sometimes. A concolic testing strategy is a function which decides when to apply random testing or symbolic execution, and if it is the latter case, which program path to symbolically execute. Many heuristics-based strategies have been proposed. It is still an open problem what is the optimal concolic testing strategy. In this work, we make two contributions towards solving this problem. First, we show the optimal strategy can be defined based on the probability of program paths and the cost of constraint solving. The problem of identifying the optimal strategy is then reduced to a model checking problem of Markov Decision Processes with Costs. Secondly, in view of the complexity in identifying the optimal strategy, we design a greedy algorithm for approximating the optimal strategy. We conduct two sets of experiments. One is based on randomly generated models and the other is based on a set of C programs. The results show that existing heuristics have much room to improve and our greedy algorithm often outperforms existing heuristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信