用高斯过程分类检测心电图中的恶性室性心律失常

Kimmo Suotsalo, S. Särkkä
{"title":"用高斯过程分类检测心电图中的恶性室性心律失常","authors":"Kimmo Suotsalo, S. Särkkä","doi":"10.1109/MLSP.2017.8168160","DOIUrl":null,"url":null,"abstract":"Ventricular tachycardia, ventricular flutter, and ventricular fibrillation are malignant forms of cardiac arrhythmias, whose occurrence may be a life-threatening event. Several methods exist for detecting these arrhythmias in the electrocardiogram. However, the use of Gaussian process classifiers in this context has not been reported in the current literature. In comparison to the popular support vector machines, Gaussian processes have the advantage of being fully probabilistic, they can be re-casted in Bayesian filtering compatible state-space form, and they can be flexibly combined with first-principles physical models. In this paper we use Gaussian process classification to detect malignant ventricular arrhythmias in the electrocardiogram. We describe how Gaussian process classifiers can be used to solve the detection problem, and show that the proposed classifiers achieve a performance that is comparable to that of the state-of-the-art methods henceforth laying down promising foundations for more general electrocardiogram-based arrhythmia detection framework.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detecting malignant ventricular arrhythmias in electrocardiograms by Gaussian process classification\",\"authors\":\"Kimmo Suotsalo, S. Särkkä\",\"doi\":\"10.1109/MLSP.2017.8168160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ventricular tachycardia, ventricular flutter, and ventricular fibrillation are malignant forms of cardiac arrhythmias, whose occurrence may be a life-threatening event. Several methods exist for detecting these arrhythmias in the electrocardiogram. However, the use of Gaussian process classifiers in this context has not been reported in the current literature. In comparison to the popular support vector machines, Gaussian processes have the advantage of being fully probabilistic, they can be re-casted in Bayesian filtering compatible state-space form, and they can be flexibly combined with first-principles physical models. In this paper we use Gaussian process classification to detect malignant ventricular arrhythmias in the electrocardiogram. We describe how Gaussian process classifiers can be used to solve the detection problem, and show that the proposed classifiers achieve a performance that is comparable to that of the state-of-the-art methods henceforth laying down promising foundations for more general electrocardiogram-based arrhythmia detection framework.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"36 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

室性心动过速、心室扑动和心室颤动是心律失常的恶性形式,其发生可能是危及生命的事件。有几种方法可以在心电图中检测这些心律失常。然而,在这种情况下使用高斯过程分类器在目前的文献中还没有报道。与目前流行的支持向量机相比,高斯过程具有完全概率性、可重构为贝叶斯滤波兼容的状态空间形式、可与第一性原理物理模型灵活结合等优点。本文采用高斯过程分类方法检测心电图中的恶性室性心律失常。我们描述了如何使用高斯过程分类器来解决检测问题,并表明所提出的分类器实现了与最先进的方法相当的性能,从此为更通用的基于心电图的心律失常检测框架奠定了有希望的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting malignant ventricular arrhythmias in electrocardiograms by Gaussian process classification
Ventricular tachycardia, ventricular flutter, and ventricular fibrillation are malignant forms of cardiac arrhythmias, whose occurrence may be a life-threatening event. Several methods exist for detecting these arrhythmias in the electrocardiogram. However, the use of Gaussian process classifiers in this context has not been reported in the current literature. In comparison to the popular support vector machines, Gaussian processes have the advantage of being fully probabilistic, they can be re-casted in Bayesian filtering compatible state-space form, and they can be flexibly combined with first-principles physical models. In this paper we use Gaussian process classification to detect malignant ventricular arrhythmias in the electrocardiogram. We describe how Gaussian process classifiers can be used to solve the detection problem, and show that the proposed classifiers achieve a performance that is comparable to that of the state-of-the-art methods henceforth laying down promising foundations for more general electrocardiogram-based arrhythmia detection framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信