B. Illés, T. Hurtony, O. Krammer, R. Bátorfi, B. Medgyes, G. Harsányi
{"title":"Cu衬底上Sn薄膜早期晶须的形成","authors":"B. Illés, T. Hurtony, O. Krammer, R. Bátorfi, B. Medgyes, G. Harsányi","doi":"10.1109/ISSE.2019.8810272","DOIUrl":null,"url":null,"abstract":"The Sn thin film on Cu substrate has high Sn whisker growth susceptibility because of the intensive Cu6Sn5 intermetallic formation at the Sn-Cu interface. In this study, the whisker development on vacuum evaporated Sn thin film deposited on Cu substrates was investigated, starting directly from the Sn deposition. The aim was to obtain more information about the whiskering behavior of Sn thin film in the early stage of the life cycle. For the study, 99.99% pure tin was vacuum evaporated onto Cu substrates. Two different Cu substrates were applied with different surface roughness to investigate the effect of surface roughness on the whisker development. The average thickness of the evaporated Sn layer was ~2 μ m. Samples were stored at room temperature for 10 weeks. Whisker development was observed by scanning electron microscope. It was found that the large compressive stress in the Sn layer because of the intermetallic formation initiates the whisker development even after 1 day of the Sn layer deposition. Almost only filament type whiskers were detected. The characteristics of the whisker density showed exponential saturation up to 10 days of the study, while the length of the whiskers was growing further still the end of the study. It was also found that the surface roughness of the Cu substrate affects the rate of whisker growth.","PeriodicalId":6674,"journal":{"name":"2019 42nd International Spring Seminar on Electronics Technology (ISSE)","volume":"9 35","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Stage Whisker Development from Sn Thin Film on Cu Substrate\",\"authors\":\"B. Illés, T. Hurtony, O. Krammer, R. Bátorfi, B. Medgyes, G. Harsányi\",\"doi\":\"10.1109/ISSE.2019.8810272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sn thin film on Cu substrate has high Sn whisker growth susceptibility because of the intensive Cu6Sn5 intermetallic formation at the Sn-Cu interface. In this study, the whisker development on vacuum evaporated Sn thin film deposited on Cu substrates was investigated, starting directly from the Sn deposition. The aim was to obtain more information about the whiskering behavior of Sn thin film in the early stage of the life cycle. For the study, 99.99% pure tin was vacuum evaporated onto Cu substrates. Two different Cu substrates were applied with different surface roughness to investigate the effect of surface roughness on the whisker development. The average thickness of the evaporated Sn layer was ~2 μ m. Samples were stored at room temperature for 10 weeks. Whisker development was observed by scanning electron microscope. It was found that the large compressive stress in the Sn layer because of the intermetallic formation initiates the whisker development even after 1 day of the Sn layer deposition. Almost only filament type whiskers were detected. The characteristics of the whisker density showed exponential saturation up to 10 days of the study, while the length of the whiskers was growing further still the end of the study. It was also found that the surface roughness of the Cu substrate affects the rate of whisker growth.\",\"PeriodicalId\":6674,\"journal\":{\"name\":\"2019 42nd International Spring Seminar on Electronics Technology (ISSE)\",\"volume\":\"9 35\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 42nd International Spring Seminar on Electronics Technology (ISSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE.2019.8810272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Spring Seminar on Electronics Technology (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE.2019.8810272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early Stage Whisker Development from Sn Thin Film on Cu Substrate
The Sn thin film on Cu substrate has high Sn whisker growth susceptibility because of the intensive Cu6Sn5 intermetallic formation at the Sn-Cu interface. In this study, the whisker development on vacuum evaporated Sn thin film deposited on Cu substrates was investigated, starting directly from the Sn deposition. The aim was to obtain more information about the whiskering behavior of Sn thin film in the early stage of the life cycle. For the study, 99.99% pure tin was vacuum evaporated onto Cu substrates. Two different Cu substrates were applied with different surface roughness to investigate the effect of surface roughness on the whisker development. The average thickness of the evaporated Sn layer was ~2 μ m. Samples were stored at room temperature for 10 weeks. Whisker development was observed by scanning electron microscope. It was found that the large compressive stress in the Sn layer because of the intermetallic formation initiates the whisker development even after 1 day of the Sn layer deposition. Almost only filament type whiskers were detected. The characteristics of the whisker density showed exponential saturation up to 10 days of the study, while the length of the whiskers was growing further still the end of the study. It was also found that the surface roughness of the Cu substrate affects the rate of whisker growth.