{"title":"基于无风险k -均值聚类的MOOC论坛影响力用户识别","authors":"X. Hou, Chi-Un Lei, Yu-Kwong Kwok","doi":"10.1109/ICMLA.2017.00-34","DOIUrl":null,"url":null,"abstract":"Massive Open Online Courses (MOOCs) have recently been highly popular among worldwide learners, while it is challenging to manage and interpret the large-scale discussion forum which is the dominant channel of online communication. K-Means clustering, one of the famous unsupervised learning algorithms, could help instructors identify influential users in MOOC forum, to better understand and improve online learning experience. However, traditional K-Means suffers from bias of outliers and risk of falling into local optimum. In this paper, OP-DCI, an optimized K-Means algorithm is proposed, using outlier post-labeling and distant centroid initialization. Outliers are not solely filtered out but extracted as distinct objects for post-labeling, and distant centroid initialization eliminates the risk of falling into local optimum. With OP-DCI, learners in MOOC forum are clustered efficiently with satisfactory interpretation, and instructors can subsequently design personalized learning strategies for different clusters.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"53 11","pages":"936-939"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"OP-DCI: A Riskless K-Means Clustering for Influential User Identification in MOOC Forum\",\"authors\":\"X. Hou, Chi-Un Lei, Yu-Kwong Kwok\",\"doi\":\"10.1109/ICMLA.2017.00-34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive Open Online Courses (MOOCs) have recently been highly popular among worldwide learners, while it is challenging to manage and interpret the large-scale discussion forum which is the dominant channel of online communication. K-Means clustering, one of the famous unsupervised learning algorithms, could help instructors identify influential users in MOOC forum, to better understand and improve online learning experience. However, traditional K-Means suffers from bias of outliers and risk of falling into local optimum. In this paper, OP-DCI, an optimized K-Means algorithm is proposed, using outlier post-labeling and distant centroid initialization. Outliers are not solely filtered out but extracted as distinct objects for post-labeling, and distant centroid initialization eliminates the risk of falling into local optimum. With OP-DCI, learners in MOOC forum are clustered efficiently with satisfactory interpretation, and instructors can subsequently design personalized learning strategies for different clusters.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"53 11\",\"pages\":\"936-939\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OP-DCI: A Riskless K-Means Clustering for Influential User Identification in MOOC Forum
Massive Open Online Courses (MOOCs) have recently been highly popular among worldwide learners, while it is challenging to manage and interpret the large-scale discussion forum which is the dominant channel of online communication. K-Means clustering, one of the famous unsupervised learning algorithms, could help instructors identify influential users in MOOC forum, to better understand and improve online learning experience. However, traditional K-Means suffers from bias of outliers and risk of falling into local optimum. In this paper, OP-DCI, an optimized K-Means algorithm is proposed, using outlier post-labeling and distant centroid initialization. Outliers are not solely filtered out but extracted as distinct objects for post-labeling, and distant centroid initialization eliminates the risk of falling into local optimum. With OP-DCI, learners in MOOC forum are clustered efficiently with satisfactory interpretation, and instructors can subsequently design personalized learning strategies for different clusters.