{"title":"有序巴拿赫空间的极小化原理及其在Ekeland变分原理中的应用","authors":"A. Boucenna, M. Briki, T. Moussaoui, D. Regan","doi":"10.7153/dea-09-08","DOIUrl":null,"url":null,"abstract":"In this paper we establish a minimization principle in an ordered Banach space (in particular in a Riesz-Banach space). As an application we discuss the existence of a positive solution for a boundary value problem on the half-line even when the nonlinear term is signchanging. Mathematics subject classification (2010): 35B38, 47L07.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"28 6","pages":"99-104"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimization principle in ordered Banach spaces and application via Ekeland's variational principle\",\"authors\":\"A. Boucenna, M. Briki, T. Moussaoui, D. Regan\",\"doi\":\"10.7153/dea-09-08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish a minimization principle in an ordered Banach space (in particular in a Riesz-Banach space). As an application we discuss the existence of a positive solution for a boundary value problem on the half-line even when the nonlinear term is signchanging. Mathematics subject classification (2010): 35B38, 47L07.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"28 6\",\"pages\":\"99-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-09-08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-09-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimization principle in ordered Banach spaces and application via Ekeland's variational principle
In this paper we establish a minimization principle in an ordered Banach space (in particular in a Riesz-Banach space). As an application we discuss the existence of a positive solution for a boundary value problem on the half-line even when the nonlinear term is signchanging. Mathematics subject classification (2010): 35B38, 47L07.