有序巴拿赫空间的极小化原理及其在Ekeland变分原理中的应用

A. Boucenna, M. Briki, T. Moussaoui, D. Regan
{"title":"有序巴拿赫空间的极小化原理及其在Ekeland变分原理中的应用","authors":"A. Boucenna, M. Briki, T. Moussaoui, D. Regan","doi":"10.7153/dea-09-08","DOIUrl":null,"url":null,"abstract":"In this paper we establish a minimization principle in an ordered Banach space (in particular in a Riesz-Banach space). As an application we discuss the existence of a positive solution for a boundary value problem on the half-line even when the nonlinear term is signchanging. Mathematics subject classification (2010): 35B38, 47L07.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"28 6","pages":"99-104"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimization principle in ordered Banach spaces and application via Ekeland's variational principle\",\"authors\":\"A. Boucenna, M. Briki, T. Moussaoui, D. Regan\",\"doi\":\"10.7153/dea-09-08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish a minimization principle in an ordered Banach space (in particular in a Riesz-Banach space). As an application we discuss the existence of a positive solution for a boundary value problem on the half-line even when the nonlinear term is signchanging. Mathematics subject classification (2010): 35B38, 47L07.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"28 6\",\"pages\":\"99-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-09-08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-09-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了有序Banach空间(特别是Riesz-Banach空间)上的最小化原理。作为一个应用,我们讨论了当非线性项变化时,边值问题在半线上正解的存在性。数学学科分类(2010):35B38, 47L07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimization principle in ordered Banach spaces and application via Ekeland's variational principle
In this paper we establish a minimization principle in an ordered Banach space (in particular in a Riesz-Banach space). As an application we discuss the existence of a positive solution for a boundary value problem on the half-line even when the nonlinear term is signchanging. Mathematics subject classification (2010): 35B38, 47L07.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信