{"title":"手持视频透视增强现实中用户透视渲染的透视几何方法","authors":"Ali Samini, K. L. Palmerius","doi":"10.1145/2671015.2671127","DOIUrl":null,"url":null,"abstract":"Video see-through Augmented Reality (V-AR) displays a video feed overlaid with information, co-registered with the displayed objects. In this paper we consider the type of V-AR that is based on a hand-held device with a fixed camera. In most of the VA-R applications the view displayed on the screen is completely determined by the orientation of the camera, i.e., the device-perspective rendering; the screen displays what the camera sees. The alternative method is to use the relative pose of the user's view and the camera, i.e., the user-perspective rendering. In this paper we present an approach to the user perspective V-AR using 3D projective geometry. The view is adjusted to the user's perspective and rendered on the screen, making it an augmented window. We created and tested a running prototype based on our method.","PeriodicalId":93673,"journal":{"name":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","volume":"49 2","pages":"207-208"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A perspective geometry approach to user-perspective rendering in hand-held video see-through augmented reality\",\"authors\":\"Ali Samini, K. L. Palmerius\",\"doi\":\"10.1145/2671015.2671127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video see-through Augmented Reality (V-AR) displays a video feed overlaid with information, co-registered with the displayed objects. In this paper we consider the type of V-AR that is based on a hand-held device with a fixed camera. In most of the VA-R applications the view displayed on the screen is completely determined by the orientation of the camera, i.e., the device-perspective rendering; the screen displays what the camera sees. The alternative method is to use the relative pose of the user's view and the camera, i.e., the user-perspective rendering. In this paper we present an approach to the user perspective V-AR using 3D projective geometry. The view is adjusted to the user's perspective and rendered on the screen, making it an augmented window. We created and tested a running prototype based on our method.\",\"PeriodicalId\":93673,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"49 2\",\"pages\":\"207-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2671015.2671127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2671015.2671127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A perspective geometry approach to user-perspective rendering in hand-held video see-through augmented reality
Video see-through Augmented Reality (V-AR) displays a video feed overlaid with information, co-registered with the displayed objects. In this paper we consider the type of V-AR that is based on a hand-held device with a fixed camera. In most of the VA-R applications the view displayed on the screen is completely determined by the orientation of the camera, i.e., the device-perspective rendering; the screen displays what the camera sees. The alternative method is to use the relative pose of the user's view and the camera, i.e., the user-perspective rendering. In this paper we present an approach to the user perspective V-AR using 3D projective geometry. The view is adjusted to the user's perspective and rendered on the screen, making it an augmented window. We created and tested a running prototype based on our method.