结构化面部幻觉

Chih-Yuan Yang, Sifei Liu, Ming-Hsuan Yang
{"title":"结构化面部幻觉","authors":"Chih-Yuan Yang, Sifei Liu, Ming-Hsuan Yang","doi":"10.1109/CVPR.2013.146","DOIUrl":null,"url":null,"abstract":"The goal of face hallucination is to generate high-resolution images with fidelity from low-resolution ones. In contrast to existing methods based on patch similarity or holistic constraints in the image space, we propose to exploit local image structures for face hallucination. Each face image is represented in terms of facial components, contours and smooth regions. The image structure is maintained via matching gradients in the reconstructed high-resolution output. For facial components, we align input images to generate accurate exemplars and transfer the high-frequency details for preserving structural consistency. For contours, we learn statistical priors to generate salient structures in the high-resolution images. A patch matching method is utilized on the smooth regions where the image gradients are preserved. Experimental results demonstrate that the proposed algorithm generates hallucinated face images with favorable quality and adaptability.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"90 3-4","pages":"1099-1106"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Structured Face Hallucination\",\"authors\":\"Chih-Yuan Yang, Sifei Liu, Ming-Hsuan Yang\",\"doi\":\"10.1109/CVPR.2013.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of face hallucination is to generate high-resolution images with fidelity from low-resolution ones. In contrast to existing methods based on patch similarity or holistic constraints in the image space, we propose to exploit local image structures for face hallucination. Each face image is represented in terms of facial components, contours and smooth regions. The image structure is maintained via matching gradients in the reconstructed high-resolution output. For facial components, we align input images to generate accurate exemplars and transfer the high-frequency details for preserving structural consistency. For contours, we learn statistical priors to generate salient structures in the high-resolution images. A patch matching method is utilized on the smooth regions where the image gradients are preserved. Experimental results demonstrate that the proposed algorithm generates hallucinated face images with favorable quality and adaptability.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"90 3-4\",\"pages\":\"1099-1106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

人脸幻觉的目标是从低分辨率图像中生成具有保真度的高分辨率图像。与现有的基于图像空间中的斑块相似度或整体约束的方法相比,我们提出利用局部图像结构来实现人脸幻觉。每张人脸图像都是根据人脸成分、轮廓和光滑区域来表示的。通过在重建的高分辨率输出中匹配梯度来保持图像结构。对于面部成分,我们对齐输入图像以生成准确的样本,并传输高频细节以保持结构一致性。对于轮廓,我们学习统计先验来生成高分辨率图像中的显著结构。在保持图像梯度的光滑区域上采用了一种补丁匹配方法。实验结果表明,该算法生成的幻觉人脸图像具有良好的质量和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured Face Hallucination
The goal of face hallucination is to generate high-resolution images with fidelity from low-resolution ones. In contrast to existing methods based on patch similarity or holistic constraints in the image space, we propose to exploit local image structures for face hallucination. Each face image is represented in terms of facial components, contours and smooth regions. The image structure is maintained via matching gradients in the reconstructed high-resolution output. For facial components, we align input images to generate accurate exemplars and transfer the high-frequency details for preserving structural consistency. For contours, we learn statistical priors to generate salient structures in the high-resolution images. A patch matching method is utilized on the smooth regions where the image gradients are preserved. Experimental results demonstrate that the proposed algorithm generates hallucinated face images with favorable quality and adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信