{"title":"一类带边界层的拟线性抛物方程的数值解","authors":"I.P. Boglayev","doi":"10.1016/0041-5553(90)90190-4","DOIUrl":null,"url":null,"abstract":"<div><p>To solve a quasilinear parabolic equation with small parameter multiplying the derivatives with respect to the spatial variables, a numerical method is constructed with an estimate of the error, which is uniform with respect to the parameter. The construction of a nonlinear difference scheme is based on the method of straight lines and on the application of exact systems to one-dimensional problems. The computational mesh is chosen so that its density increases in a suitable way in the neighbourhood of the boundary. We propose that the nonlinear scheme be solved by an iterative algorithm, which converges uniformly with respect to the small parameter.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 3","pages":"Pages 55-63"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90190-4","citationCount":"14","resultStr":"{\"title\":\"Numerical solution of a quasilinear parabolic equation with a boundary layer\",\"authors\":\"I.P. Boglayev\",\"doi\":\"10.1016/0041-5553(90)90190-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To solve a quasilinear parabolic equation with small parameter multiplying the derivatives with respect to the spatial variables, a numerical method is constructed with an estimate of the error, which is uniform with respect to the parameter. The construction of a nonlinear difference scheme is based on the method of straight lines and on the application of exact systems to one-dimensional problems. The computational mesh is chosen so that its density increases in a suitable way in the neighbourhood of the boundary. We propose that the nonlinear scheme be solved by an iterative algorithm, which converges uniformly with respect to the small parameter.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 3\",\"pages\":\"Pages 55-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90190-4\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0041555390901904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0041555390901904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical solution of a quasilinear parabolic equation with a boundary layer
To solve a quasilinear parabolic equation with small parameter multiplying the derivatives with respect to the spatial variables, a numerical method is constructed with an estimate of the error, which is uniform with respect to the parameter. The construction of a nonlinear difference scheme is based on the method of straight lines and on the application of exact systems to one-dimensional problems. The computational mesh is chosen so that its density increases in a suitable way in the neighbourhood of the boundary. We propose that the nonlinear scheme be solved by an iterative algorithm, which converges uniformly with respect to the small parameter.