梅纳斯的猜想被重新审视了

P. Matet
{"title":"梅纳斯的猜想被重新审视了","authors":"P. Matet","doi":"10.1017/bsl.2023.15","DOIUrl":null,"url":null,"abstract":"Abstract In an article published in 1974, Menas conjectured that any stationary subset of can be split in many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on . In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MENAS’S CONJECTURE REVISITED\",\"authors\":\"P. Matet\",\"doi\":\"10.1017/bsl.2023.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In an article published in 1974, Menas conjectured that any stationary subset of can be split in many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on . In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2023.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2023.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在1974年发表的一篇文章中,Menas推测任意的平稳子集都可以被分割成许多成对不相交的平稳子集。尽管鲍姆加特纳和泰勒很久以前就证明了这个猜想始终是错误的,但它仍然困扰着论文。在什么情况下它成立?在ZFC中可以证明多少?我们从这个猜想的简史开始,然后形成一个新的版本,最后我们不断削弱这个新的断言,直到在Usuba的工作基础上,我们发现了一些可以证明的东西。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MENAS’S CONJECTURE REVISITED
Abstract In an article published in 1974, Menas conjectured that any stationary subset of can be split in many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on . In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信