基于cart的变量排序在田纳西伊士曼基准过程故障变量隔离中的应用

Jungwon Yu, Jonggeun Kim, Hansoo Lee, Seunghwan Jung, Juneho Park, Sungshin Kim
{"title":"基于cart的变量排序在田纳西伊士曼基准过程故障变量隔离中的应用","authors":"Jungwon Yu, Jonggeun Kim, Hansoo Lee, Seunghwan Jung, Juneho Park, Sungshin Kim","doi":"10.1109/ICIT.2019.8755167","DOIUrl":null,"url":null,"abstract":"By analyzing multivariate data collected from complex industrial processes via data-driven techniques, potential process faults can be accurately detected and isolated in a timely manner; this is essential for ensuring safety, availability, and reliability of them. In this paper, we apply the fault isolation (FI) method via classification and regression tree based variable ranking (proposed by Yu et al. [12]) to Tennessee Eastman (TE) benchmark process; TE process has been widely used in academic fields of fault detection and isolation. The purpose of this paper is to verify the performance of the FI method through TE benchmark process. As described in experimental results, the method can isolate faulty variables more clearly than comparison methods without fault smearing.","PeriodicalId":6701,"journal":{"name":"2019 IEEE International Conference on Industrial Technology (ICIT)","volume":"10 1","pages":"1000-1005"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of CART-Based Variable Ranking for Faulty Variable Isolation in Tennessee Eastman Benchmark Process\",\"authors\":\"Jungwon Yu, Jonggeun Kim, Hansoo Lee, Seunghwan Jung, Juneho Park, Sungshin Kim\",\"doi\":\"10.1109/ICIT.2019.8755167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By analyzing multivariate data collected from complex industrial processes via data-driven techniques, potential process faults can be accurately detected and isolated in a timely manner; this is essential for ensuring safety, availability, and reliability of them. In this paper, we apply the fault isolation (FI) method via classification and regression tree based variable ranking (proposed by Yu et al. [12]) to Tennessee Eastman (TE) benchmark process; TE process has been widely used in academic fields of fault detection and isolation. The purpose of this paper is to verify the performance of the FI method through TE benchmark process. As described in experimental results, the method can isolate faulty variables more clearly than comparison methods without fault smearing.\",\"PeriodicalId\":6701,\"journal\":{\"name\":\"2019 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"10 1\",\"pages\":\"1000-1005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2019.8755167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2019.8755167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过数据驱动技术分析从复杂工业过程中收集的多变量数据,可以准确地发现并及时隔离潜在的过程故障;这对于确保它们的安全性、可用性和可靠性至关重要。本文将Yu等人[12]提出的基于分类和回归树的变量排序故障隔离(FI)方法应用于Tennessee Eastman (TE)基准过程;TE过程已广泛应用于故障检测与隔离的学术领域。本文的目的是通过TE基准测试过程来验证FI方法的性能。实验结果表明,该方法可以比没有故障涂抹的比较方法更清楚地隔离故障变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of CART-Based Variable Ranking for Faulty Variable Isolation in Tennessee Eastman Benchmark Process
By analyzing multivariate data collected from complex industrial processes via data-driven techniques, potential process faults can be accurately detected and isolated in a timely manner; this is essential for ensuring safety, availability, and reliability of them. In this paper, we apply the fault isolation (FI) method via classification and regression tree based variable ranking (proposed by Yu et al. [12]) to Tennessee Eastman (TE) benchmark process; TE process has been widely used in academic fields of fault detection and isolation. The purpose of this paper is to verify the performance of the FI method through TE benchmark process. As described in experimental results, the method can isolate faulty variables more clearly than comparison methods without fault smearing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信