磁共振测速中的逆问题:形状、强迫和边界条件推断

A. Kontogiannis, M. Juniper
{"title":"磁共振测速中的逆问题:形状、强迫和边界条件推断","authors":"A. Kontogiannis, M. Juniper","doi":"10.1115/fedsm2021-66080","DOIUrl":null,"url":null,"abstract":"\n We derive and implement an algorithm that takes noisy magnetic resonance velocimetry (MRV) images of Stokes flow and infers the velocity field, the most likely position of the boundary, the inlet and outlet boundary conditions, and any body forces. We do this by minimizing a discrepancy norm of the velocity fields between the MRV experiment and the Stokes problem, and at the same time we obtain a filtered (denoised) version of the original MRV image. We describe two possible approaches to regularize the inverse problem, using either a variational technique, or Gaussian random fields. We test the algorithm for flows governed by a Poisson or a Stokes problem, using both real and synthetic MRV measurements. We find that the algorithm is capable of reconstructing the shape of the domain from artificial images with a low signal-to-noise ratio.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse Problems in Magnetic Resonance Velocimetry: Shape, Forcing and Boundary Condition Inference\",\"authors\":\"A. Kontogiannis, M. Juniper\",\"doi\":\"10.1115/fedsm2021-66080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We derive and implement an algorithm that takes noisy magnetic resonance velocimetry (MRV) images of Stokes flow and infers the velocity field, the most likely position of the boundary, the inlet and outlet boundary conditions, and any body forces. We do this by minimizing a discrepancy norm of the velocity fields between the MRV experiment and the Stokes problem, and at the same time we obtain a filtered (denoised) version of the original MRV image. We describe two possible approaches to regularize the inverse problem, using either a variational technique, or Gaussian random fields. We test the algorithm for flows governed by a Poisson or a Stokes problem, using both real and synthetic MRV measurements. We find that the algorithm is capable of reconstructing the shape of the domain from artificial images with a low signal-to-noise ratio.\",\"PeriodicalId\":23636,\"journal\":{\"name\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-66080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-66080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们推导并实现了一种算法,该算法采用Stokes流的噪声磁共振测速(MRV)图像,并推断速度场,边界最可能的位置,入口和出口边界条件以及任何物体力。我们通过最小化MRV实验和Stokes问题之间的速度场差异范数来实现这一点,同时我们获得原始MRV图像的滤波(去噪)版本。我们描述了两种可能的方法来正则化逆问题,使用变分技术或高斯随机场。我们使用真实的和合成的MRV测量来测试由泊松或斯托克斯问题控制的流的算法。我们发现该算法能够以较低的信噪比从人工图像中重建区域形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Problems in Magnetic Resonance Velocimetry: Shape, Forcing and Boundary Condition Inference
We derive and implement an algorithm that takes noisy magnetic resonance velocimetry (MRV) images of Stokes flow and infers the velocity field, the most likely position of the boundary, the inlet and outlet boundary conditions, and any body forces. We do this by minimizing a discrepancy norm of the velocity fields between the MRV experiment and the Stokes problem, and at the same time we obtain a filtered (denoised) version of the original MRV image. We describe two possible approaches to regularize the inverse problem, using either a variational technique, or Gaussian random fields. We test the algorithm for flows governed by a Poisson or a Stokes problem, using both real and synthetic MRV measurements. We find that the algorithm is capable of reconstructing the shape of the domain from artificial images with a low signal-to-noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信