{"title":"基于重整化迹的$Diff(S^1)$-伪微分算子的几何性质。","authors":"Jean-Pierre Magnot","doi":"10.15673/TMGC.V14I1.1784","DOIUrl":null,"url":null,"abstract":"In this article, we examine the geometry of a group of Fourier-integral operators, which is the central extension of Dif f (S 1) with a group of classical pseudo-differential operators of any order. Several subgroups are considered , and the corresponding groups with formal pseudodifferential operators are defined. We investigate the relationship of this group with the restricted general linear group GLres, we define a right-invariant pseudo-Riemannian metric on it that extends the Hilbert-Schmidt Riemannian metric by the use of renormalized traces of pseudo-differential operators, and we describe classes of remarkable connections. MSC (2010) : 22E66, 47G30, 58B20, 58J40","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"362 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the geometry of $Diff(S^1)$-pseudodifferential operators based on renormalized traces.\",\"authors\":\"Jean-Pierre Magnot\",\"doi\":\"10.15673/TMGC.V14I1.1784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we examine the geometry of a group of Fourier-integral operators, which is the central extension of Dif f (S 1) with a group of classical pseudo-differential operators of any order. Several subgroups are considered , and the corresponding groups with formal pseudodifferential operators are defined. We investigate the relationship of this group with the restricted general linear group GLres, we define a right-invariant pseudo-Riemannian metric on it that extends the Hilbert-Schmidt Riemannian metric by the use of renormalized traces of pseudo-differential operators, and we describe classes of remarkable connections. MSC (2010) : 22E66, 47G30, 58B20, 58J40\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"362 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V14I1.1784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V14I1.1784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the geometry of $Diff(S^1)$-pseudodifferential operators based on renormalized traces.
In this article, we examine the geometry of a group of Fourier-integral operators, which is the central extension of Dif f (S 1) with a group of classical pseudo-differential operators of any order. Several subgroups are considered , and the corresponding groups with formal pseudodifferential operators are defined. We investigate the relationship of this group with the restricted general linear group GLres, we define a right-invariant pseudo-Riemannian metric on it that extends the Hilbert-Schmidt Riemannian metric by the use of renormalized traces of pseudo-differential operators, and we describe classes of remarkable connections. MSC (2010) : 22E66, 47G30, 58B20, 58J40