非循环反褶积的极大似然扩展

J. Portilla
{"title":"非循环反褶积的极大似然扩展","authors":"J. Portilla","doi":"10.1109/ICIP.2014.7025868","DOIUrl":null,"url":null,"abstract":"Directly applying circular de-convolution to real-world blurred images usually results in boundary artifacts. Classic boundary extension techniques fail to provide likely results, in terms of a circular boundary-condition observation model. Boundary reflection gives raise to non-smooth features, especially when oblique oriented features encounter the image boundaries. Tapering the boundaries of the image support, or similar strategies (like constrained diffusion), provides smoothness on the toroidal support; however this does not guarantee consistency with the spectral properties of the blur (in particular, to its zeros). Here we propose a simple, yet effective, model-derived method for extending real-world blurred images, so that they become likely in terms of a Gaussian circular boundary-condition observation model. We achieve artifact-free results, even under highly unfavorable conditions, when other methods fail.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"21 4","pages":"4276-4279"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximum likelihood extension for non-circulant deconvolution\",\"authors\":\"J. Portilla\",\"doi\":\"10.1109/ICIP.2014.7025868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directly applying circular de-convolution to real-world blurred images usually results in boundary artifacts. Classic boundary extension techniques fail to provide likely results, in terms of a circular boundary-condition observation model. Boundary reflection gives raise to non-smooth features, especially when oblique oriented features encounter the image boundaries. Tapering the boundaries of the image support, or similar strategies (like constrained diffusion), provides smoothness on the toroidal support; however this does not guarantee consistency with the spectral properties of the blur (in particular, to its zeros). Here we propose a simple, yet effective, model-derived method for extending real-world blurred images, so that they become likely in terms of a Gaussian circular boundary-condition observation model. We achieve artifact-free results, even under highly unfavorable conditions, when other methods fail.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"21 4\",\"pages\":\"4276-4279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

直接对现实世界的模糊图像应用圆反卷积通常会导致边界伪影。在圆形边界条件观测模型中,经典的边界扩展技术无法提供可能的结果。边界反射会产生非光滑特征,特别是当斜向特征遇到图像边界时。逐渐缩小图像支持的边界,或类似的策略(如约束扩散),提供环面支持的平滑性;然而,这并不能保证与模糊的光谱特性的一致性(特别是,到它的零点)。在这里,我们提出了一种简单而有效的模型派生方法来扩展真实世界的模糊图像,使它们在高斯圆形边界条件观测模型中变得可能。即使在非常不利的条件下,当其他方法失败时,我们也可以获得无伪影的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood extension for non-circulant deconvolution
Directly applying circular de-convolution to real-world blurred images usually results in boundary artifacts. Classic boundary extension techniques fail to provide likely results, in terms of a circular boundary-condition observation model. Boundary reflection gives raise to non-smooth features, especially when oblique oriented features encounter the image boundaries. Tapering the boundaries of the image support, or similar strategies (like constrained diffusion), provides smoothness on the toroidal support; however this does not guarantee consistency with the spectral properties of the blur (in particular, to its zeros). Here we propose a simple, yet effective, model-derived method for extending real-world blurred images, so that they become likely in terms of a Gaussian circular boundary-condition observation model. We achieve artifact-free results, even under highly unfavorable conditions, when other methods fail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信