粗尾矿和干灰处理设施设计

A. Copeland, J. Teixeira
{"title":"粗尾矿和干灰处理设施设计","authors":"A. Copeland, J. Teixeira","doi":"10.36487/ACG_REP/1910_04_COPELAND","DOIUrl":null,"url":null,"abstract":"The diamond industry has been disposing of its coarse tailings using conveyor and stacker systems for many years. The process plant typically generates two tailings products, a grit fraction (sand) and a coarse fraction (gravel), which are often combined on one dump. In some cases, the dump is stable with a single steep slope angle. However, in other situations a composite slope forms with settlement and intermittent slumping behaviour, this impacts on both design and operation. \nThe thermal coal industry has also been disposing of dry ash for many years using either conveyor/stacking systems or haul trucks. Both systems work well, but the costs, deposition plans and stability aspects differ. Management of water and dust are also key factors. \nThere are a number of key design and operational aspects that are similar between these diamond tailings and ash facilities, and would apply equally to filtered and dry stacked tailings. This paper aims to examine these similarities and show how these learnings could be built into new filtered tailings designs and operations to make them more efficient and stable.","PeriodicalId":20480,"journal":{"name":"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of coarse tailings and dry ash disposal facilities\",\"authors\":\"A. Copeland, J. Teixeira\",\"doi\":\"10.36487/ACG_REP/1910_04_COPELAND\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diamond industry has been disposing of its coarse tailings using conveyor and stacker systems for many years. The process plant typically generates two tailings products, a grit fraction (sand) and a coarse fraction (gravel), which are often combined on one dump. In some cases, the dump is stable with a single steep slope angle. However, in other situations a composite slope forms with settlement and intermittent slumping behaviour, this impacts on both design and operation. \\nThe thermal coal industry has also been disposing of dry ash for many years using either conveyor/stacking systems or haul trucks. Both systems work well, but the costs, deposition plans and stability aspects differ. Management of water and dust are also key factors. \\nThere are a number of key design and operational aspects that are similar between these diamond tailings and ash facilities, and would apply equally to filtered and dry stacked tailings. This paper aims to examine these similarities and show how these learnings could be built into new filtered tailings designs and operations to make them more efficient and stable.\",\"PeriodicalId\":20480,\"journal\":{\"name\":\"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36487/ACG_REP/1910_04_COPELAND\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36487/ACG_REP/1910_04_COPELAND","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,钻石工业一直在使用输送机和堆料系统处理其粗尾矿。加工厂通常会产生两种尾矿产品,一种是粗粒(砂),另一种是粗粒(砾石),这两种产品通常会合并在一个排土场上。在某些情况下,排土场在单一陡坡角下是稳定的。然而,在其他情况下,复合边坡会形成沉降和间歇性滑坡行为,这对设计和操作都有影响。动力煤工业多年来也一直在使用输送/堆放系统或运输卡车处理干灰。两种系统都运行良好,但成本、沉积计划和稳定性方面存在差异。水和粉尘的管理也是关键因素。在这些钻石尾矿和灰设施之间,有许多关键的设计和操作方面是相似的,同样适用于过滤和干堆尾矿。本文旨在研究这些相似之处,并展示如何将这些经验教训融入新的过滤尾矿设计和操作中,以使其更高效和稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of coarse tailings and dry ash disposal facilities
The diamond industry has been disposing of its coarse tailings using conveyor and stacker systems for many years. The process plant typically generates two tailings products, a grit fraction (sand) and a coarse fraction (gravel), which are often combined on one dump. In some cases, the dump is stable with a single steep slope angle. However, in other situations a composite slope forms with settlement and intermittent slumping behaviour, this impacts on both design and operation. The thermal coal industry has also been disposing of dry ash for many years using either conveyor/stacking systems or haul trucks. Both systems work well, but the costs, deposition plans and stability aspects differ. Management of water and dust are also key factors. There are a number of key design and operational aspects that are similar between these diamond tailings and ash facilities, and would apply equally to filtered and dry stacked tailings. This paper aims to examine these similarities and show how these learnings could be built into new filtered tailings designs and operations to make them more efficient and stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信