安全最小加权二部匹配

B. Anandan, Chris Clifton
{"title":"安全最小加权二部匹配","authors":"B. Anandan, Chris Clifton","doi":"10.1109/DESEC.2017.8073798","DOIUrl":null,"url":null,"abstract":"Simple application of secure multi-party computation techniques on an algorithm is not sufficient to guarantee privacy, if the underlying algorithm is data dependent or if the output can leak information. The first issue can be addressed through data oblivious computation, the second through differential privacy. However, both can be difficult to achieve with graph algorithms. This paper addresses both problems, giving a differentially private data-oblivious protocol for minimum weighted bipartite matching and minimum vertex cover.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"133 3","pages":"60-67"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Secure minimum weighted bipartite matching\",\"authors\":\"B. Anandan, Chris Clifton\",\"doi\":\"10.1109/DESEC.2017.8073798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple application of secure multi-party computation techniques on an algorithm is not sufficient to guarantee privacy, if the underlying algorithm is data dependent or if the output can leak information. The first issue can be addressed through data oblivious computation, the second through differential privacy. However, both can be difficult to achieve with graph algorithms. This paper addresses both problems, giving a differentially private data-oblivious protocol for minimum weighted bipartite matching and minimum vertex cover.\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"133 3\",\"pages\":\"60-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DESEC.2017.8073798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

如果底层算法依赖于数据,或者如果输出可能泄露信息,那么在算法上简单地应用安全多方计算技术不足以保证隐私。第一个问题可以通过数据无关计算来解决,第二个问题可以通过差分隐私来解决。然而,这两者都很难用图算法实现。本文解决了这两个问题,给出了最小加权二部匹配和最小顶点覆盖的差分私有数据无关协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure minimum weighted bipartite matching
Simple application of secure multi-party computation techniques on an algorithm is not sufficient to guarantee privacy, if the underlying algorithm is data dependent or if the output can leak information. The first issue can be addressed through data oblivious computation, the second through differential privacy. However, both can be difficult to achieve with graph algorithms. This paper addresses both problems, giving a differentially private data-oblivious protocol for minimum weighted bipartite matching and minimum vertex cover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信