{"title":"边界条件在散射观测量量子计算中的作用","authors":"R. Briceño, J. V. Guerrero, M. Hansen, A. Sturzu","doi":"10.1103/physrevd.103.014506","DOIUrl":null,"url":null,"abstract":"Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"126 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Role of boundary conditions in quantum computations of scattering observables\",\"authors\":\"R. Briceño, J. V. Guerrero, M. Hansen, A. Sturzu\",\"doi\":\"10.1103/physrevd.103.014506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"126 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.103.014506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.014506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of boundary conditions in quantum computations of scattering observables
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.