基于递归神经网络的网络流量预测

Nipun Ramakrishnan, Tarun Soni
{"title":"基于递归神经网络的网络流量预测","authors":"Nipun Ramakrishnan, Tarun Soni","doi":"10.1109/ICMLA.2018.00035","DOIUrl":null,"url":null,"abstract":"The network traffic prediction problem involves predicting characteristics of future network traffic from observations of past traffic. Network traffic prediction has a variety of applications including network monitoring, resource management, and threat detection. In this paper, we propose several Recurrent Neural Network (RNN) architectures (the standard RNN, Long Short Term Memory (LSTM) networks, and Gated Recurrent Units (GRU)) to solve the network traffic prediction problem. We analyze the performance of these models on three important problems in network traffic prediction: volume prediction, packet protocol prediction, and packet distribution prediction. We achieve state of the art results on the volume prediction problem on public datasets such as the GEANT and Abilene networks. We also believe this is the first work in the domain of protocol prediction and packet distribution prediction using RNN architectures. In this paper, we show that RNN architectures demonstrate promising results in all three of these domains in network traffic prediction, outperforming standard statistical forecasting models significantly.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"852 ","pages":"187-193"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Network Traffic Prediction Using Recurrent Neural Networks\",\"authors\":\"Nipun Ramakrishnan, Tarun Soni\",\"doi\":\"10.1109/ICMLA.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The network traffic prediction problem involves predicting characteristics of future network traffic from observations of past traffic. Network traffic prediction has a variety of applications including network monitoring, resource management, and threat detection. In this paper, we propose several Recurrent Neural Network (RNN) architectures (the standard RNN, Long Short Term Memory (LSTM) networks, and Gated Recurrent Units (GRU)) to solve the network traffic prediction problem. We analyze the performance of these models on three important problems in network traffic prediction: volume prediction, packet protocol prediction, and packet distribution prediction. We achieve state of the art results on the volume prediction problem on public datasets such as the GEANT and Abilene networks. We also believe this is the first work in the domain of protocol prediction and packet distribution prediction using RNN architectures. In this paper, we show that RNN architectures demonstrate promising results in all three of these domains in network traffic prediction, outperforming standard statistical forecasting models significantly.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"852 \",\"pages\":\"187-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

网络流量预测问题涉及到通过对过去流量的观察来预测未来网络流量的特征。网络流量预测具有多种应用,包括网络监控、资源管理、威胁检测等。在本文中,我们提出了几种递归神经网络(RNN)架构(标准RNN,长短期记忆(LSTM)网络和门控递归单元(GRU))来解决网络流量预测问题。我们分析了这些模型在网络流量预测中的三个重要问题的性能:流量预测、分组协议预测和分组分布预测。我们在公共数据集(如GEANT和Abilene网络)上的体积预测问题上取得了最先进的结果。我们也相信这是使用RNN架构的协议预测和分组分布预测领域的第一个工作。在本文中,我们表明RNN架构在网络流量预测的所有这三个领域中都显示出有希望的结果,显著优于标准统计预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Traffic Prediction Using Recurrent Neural Networks
The network traffic prediction problem involves predicting characteristics of future network traffic from observations of past traffic. Network traffic prediction has a variety of applications including network monitoring, resource management, and threat detection. In this paper, we propose several Recurrent Neural Network (RNN) architectures (the standard RNN, Long Short Term Memory (LSTM) networks, and Gated Recurrent Units (GRU)) to solve the network traffic prediction problem. We analyze the performance of these models on three important problems in network traffic prediction: volume prediction, packet protocol prediction, and packet distribution prediction. We achieve state of the art results on the volume prediction problem on public datasets such as the GEANT and Abilene networks. We also believe this is the first work in the domain of protocol prediction and packet distribution prediction using RNN architectures. In this paper, we show that RNN architectures demonstrate promising results in all three of these domains in network traffic prediction, outperforming standard statistical forecasting models significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信