{"title":"基于预训练掩码自编码器的胸部x线双分布异常检测","authors":"B. Bozorgtabar, D. Mahapatra, J. Thiran","doi":"10.48550/arXiv.2307.12721","DOIUrl":null,"url":null,"abstract":"Unsupervised anomaly detection in medical images such as chest radiographs is stepping into the spotlight as it mitigates the scarcity of the labor-intensive and costly expert annotation of anomaly data. However, nearly all existing methods are formulated as a one-class classification trained only on representations from the normal class and discard a potentially significant portion of the unlabeled data. This paper focuses on a more practical setting, dual distribution anomaly detection for chest X-rays, using the entire training data, including both normal and unlabeled images. Inspired by a modern self-supervised vision transformer model trained using partial image inputs to reconstruct missing image regions -- we propose AMAE, a two-stage algorithm for adaptation of the pre-trained masked autoencoder (MAE). Starting from MAE initialization, AMAE first creates synthetic anomalies from only normal training images and trains a lightweight classifier on frozen transformer features. Subsequently, we propose an adaptation strategy to leverage unlabeled images containing anomalies. The adaptation scheme is accomplished by assigning pseudo-labels to unlabeled images and using two separate MAE based modules to model the normative and anomalous distributions of pseudo-labeled images. The effectiveness of the proposed adaptation strategy is evaluated with different anomaly ratios in an unlabeled training set. AMAE leads to consistent performance gains over competing self-supervised and dual distribution anomaly detection methods, setting the new state-of-the-art on three public chest X-ray benchmarks: RSNA, NIH-CXR, and VinDr-CXR.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"109 ","pages":"195-205"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AMAE: Adaptation of Pre-Trained Masked Autoencoder for Dual-Distribution Anomaly Detection in Chest X-Rays\",\"authors\":\"B. Bozorgtabar, D. Mahapatra, J. Thiran\",\"doi\":\"10.48550/arXiv.2307.12721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised anomaly detection in medical images such as chest radiographs is stepping into the spotlight as it mitigates the scarcity of the labor-intensive and costly expert annotation of anomaly data. However, nearly all existing methods are formulated as a one-class classification trained only on representations from the normal class and discard a potentially significant portion of the unlabeled data. This paper focuses on a more practical setting, dual distribution anomaly detection for chest X-rays, using the entire training data, including both normal and unlabeled images. Inspired by a modern self-supervised vision transformer model trained using partial image inputs to reconstruct missing image regions -- we propose AMAE, a two-stage algorithm for adaptation of the pre-trained masked autoencoder (MAE). Starting from MAE initialization, AMAE first creates synthetic anomalies from only normal training images and trains a lightweight classifier on frozen transformer features. Subsequently, we propose an adaptation strategy to leverage unlabeled images containing anomalies. The adaptation scheme is accomplished by assigning pseudo-labels to unlabeled images and using two separate MAE based modules to model the normative and anomalous distributions of pseudo-labeled images. The effectiveness of the proposed adaptation strategy is evaluated with different anomaly ratios in an unlabeled training set. AMAE leads to consistent performance gains over competing self-supervised and dual distribution anomaly detection methods, setting the new state-of-the-art on three public chest X-ray benchmarks: RSNA, NIH-CXR, and VinDr-CXR.\",\"PeriodicalId\":18289,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"109 \",\"pages\":\"195-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.12721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.12721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AMAE: Adaptation of Pre-Trained Masked Autoencoder for Dual-Distribution Anomaly Detection in Chest X-Rays
Unsupervised anomaly detection in medical images such as chest radiographs is stepping into the spotlight as it mitigates the scarcity of the labor-intensive and costly expert annotation of anomaly data. However, nearly all existing methods are formulated as a one-class classification trained only on representations from the normal class and discard a potentially significant portion of the unlabeled data. This paper focuses on a more practical setting, dual distribution anomaly detection for chest X-rays, using the entire training data, including both normal and unlabeled images. Inspired by a modern self-supervised vision transformer model trained using partial image inputs to reconstruct missing image regions -- we propose AMAE, a two-stage algorithm for adaptation of the pre-trained masked autoencoder (MAE). Starting from MAE initialization, AMAE first creates synthetic anomalies from only normal training images and trains a lightweight classifier on frozen transformer features. Subsequently, we propose an adaptation strategy to leverage unlabeled images containing anomalies. The adaptation scheme is accomplished by assigning pseudo-labels to unlabeled images and using two separate MAE based modules to model the normative and anomalous distributions of pseudo-labeled images. The effectiveness of the proposed adaptation strategy is evaluated with different anomaly ratios in an unlabeled training set. AMAE leads to consistent performance gains over competing self-supervised and dual distribution anomaly detection methods, setting the new state-of-the-art on three public chest X-ray benchmarks: RSNA, NIH-CXR, and VinDr-CXR.