M. Karow, D. Martin, P. D. Casa, G. Erbert, P. Crump
{"title":"采用改进横向结构的1kw二极管激光器的窄远场和更高效率","authors":"M. Karow, D. Martin, P. D. Casa, G. Erbert, P. Crump","doi":"10.1109/CLEOE-EQEC.2019.8872371","DOIUrl":null,"url":null,"abstract":"High power, efficient diode-laser bars with narrow far field angles are sought for many applications, for example in the 9xx nm-range for the pumping of Yb:YAG disc and slab lasers [1,2]. In previous work, broad-area (BA) diode-laser bars with 4 mm resonator length operated with high conversion efficiency η = 62% at operating power Pop = 1 kW in quasi-continuous wave testing (200 μs, 10 Hz), by using low optical loss and low-resistivity vertical structures and high fill-factors (∼70%) [1]. Lateral far field (95% power) was Θ95% > 10° [2]. However, higher η and narrower Θ95% are needed for industrial application, and we seek improvements by altering the lateral bar structure for a fixed vertical design (from [1], wavelength λ = 930 nm, loss αi ≤ 0.4 cm−1).","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"277 ","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Narrower Far Field and Higher Efficiency in 1 kW Diode-Laser Bars using Improved Lateral Structuring\",\"authors\":\"M. Karow, D. Martin, P. D. Casa, G. Erbert, P. Crump\",\"doi\":\"10.1109/CLEOE-EQEC.2019.8872371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High power, efficient diode-laser bars with narrow far field angles are sought for many applications, for example in the 9xx nm-range for the pumping of Yb:YAG disc and slab lasers [1,2]. In previous work, broad-area (BA) diode-laser bars with 4 mm resonator length operated with high conversion efficiency η = 62% at operating power Pop = 1 kW in quasi-continuous wave testing (200 μs, 10 Hz), by using low optical loss and low-resistivity vertical structures and high fill-factors (∼70%) [1]. Lateral far field (95% power) was Θ95% > 10° [2]. However, higher η and narrower Θ95% are needed for industrial application, and we seek improvements by altering the lateral bar structure for a fixed vertical design (from [1], wavelength λ = 930 nm, loss αi ≤ 0.4 cm−1).\",\"PeriodicalId\":6714,\"journal\":{\"name\":\"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)\",\"volume\":\"277 \",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE-EQEC.2019.8872371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Narrower Far Field and Higher Efficiency in 1 kW Diode-Laser Bars using Improved Lateral Structuring
High power, efficient diode-laser bars with narrow far field angles are sought for many applications, for example in the 9xx nm-range for the pumping of Yb:YAG disc and slab lasers [1,2]. In previous work, broad-area (BA) diode-laser bars with 4 mm resonator length operated with high conversion efficiency η = 62% at operating power Pop = 1 kW in quasi-continuous wave testing (200 μs, 10 Hz), by using low optical loss and low-resistivity vertical structures and high fill-factors (∼70%) [1]. Lateral far field (95% power) was Θ95% > 10° [2]. However, higher η and narrower Θ95% are needed for industrial application, and we seek improvements by altering the lateral bar structure for a fixed vertical design (from [1], wavelength λ = 930 nm, loss αi ≤ 0.4 cm−1).