{"title":"一种新的异极电感电机无传感器位置和速度估计方法","authors":"Jingzhe Wu, M. Balchin","doi":"10.1109/EPE.2014.6910921","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel position/speed estimation method for a special type of armature side excited synchronous machine, namely heteropolar inductor machines, by taking advantage of the machines' unique structural characteristics. The field winding characteristics of heteropolar inductor machines are analyzed firstly. Analytical approaches for developing q-axis position and rotor speed estimation algorithm are then discussed, based only on terminal voltage and current measurements. Finally the validity of theories is supported by practical experiments, and the performance of estimations of position and speed under both steady state and transient conditions are shown by experiments in a prototype machine.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"99 2","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel sensorless position and speed estimation method for heteropolar inductor machines\",\"authors\":\"Jingzhe Wu, M. Balchin\",\"doi\":\"10.1109/EPE.2014.6910921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel position/speed estimation method for a special type of armature side excited synchronous machine, namely heteropolar inductor machines, by taking advantage of the machines' unique structural characteristics. The field winding characteristics of heteropolar inductor machines are analyzed firstly. Analytical approaches for developing q-axis position and rotor speed estimation algorithm are then discussed, based only on terminal voltage and current measurements. Finally the validity of theories is supported by practical experiments, and the performance of estimations of position and speed under both steady state and transient conditions are shown by experiments in a prototype machine.\",\"PeriodicalId\":6508,\"journal\":{\"name\":\"2014 16th European Conference on Power Electronics and Applications\",\"volume\":\"99 2\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th European Conference on Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2014.6910921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel sensorless position and speed estimation method for heteropolar inductor machines
This paper proposes a novel position/speed estimation method for a special type of armature side excited synchronous machine, namely heteropolar inductor machines, by taking advantage of the machines' unique structural characteristics. The field winding characteristics of heteropolar inductor machines are analyzed firstly. Analytical approaches for developing q-axis position and rotor speed estimation algorithm are then discussed, based only on terminal voltage and current measurements. Finally the validity of theories is supported by practical experiments, and the performance of estimations of position and speed under both steady state and transient conditions are shown by experiments in a prototype machine.