基于补码特征的图像阈值分割

S. Ameer
{"title":"基于补码特征的图像阈值分割","authors":"S. Ameer","doi":"10.3844/ajeassp.2020.311.317","DOIUrl":null,"url":null,"abstract":"A new feature (the complement feature) is proposed in an Eigen formulations for performing global image thresholding. The goal is to find an intensity or gray-level value below which is the background while above it is the foreground (object). Each pixel in the image is represented by a (2D) unit vector where the x-component is the normalized (to [0,1] or [-1,1]) intensity of the pixel, while the y-component is its complement (e.g., Euclidian L2-Norm). The correlation matrix can then constructed to find the cross-correlation, Eigen vectors (axes of inertia) and Eigen values (description of respective sizes). Several implementations for each of the three previously mentioned categories are proposed to perform image thresholding. Interestingly, some of the proposed implementations do not require exhaustive search and a direct solution can be obtained. The results are promising on a wide range of images as demonstrated by comparison with the well-known Otsu method.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"322 ","pages":"311-317"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Image Thresholding Using the Complement Feature\",\"authors\":\"S. Ameer\",\"doi\":\"10.3844/ajeassp.2020.311.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new feature (the complement feature) is proposed in an Eigen formulations for performing global image thresholding. The goal is to find an intensity or gray-level value below which is the background while above it is the foreground (object). Each pixel in the image is represented by a (2D) unit vector where the x-component is the normalized (to [0,1] or [-1,1]) intensity of the pixel, while the y-component is its complement (e.g., Euclidian L2-Norm). The correlation matrix can then constructed to find the cross-correlation, Eigen vectors (axes of inertia) and Eigen values (description of respective sizes). Several implementations for each of the three previously mentioned categories are proposed to perform image thresholding. Interestingly, some of the proposed implementations do not require exhaustive search and a direct solution can be obtained. The results are promising on a wide range of images as demonstrated by comparison with the well-known Otsu method.\",\"PeriodicalId\":7425,\"journal\":{\"name\":\"American Journal of Engineering and Applied Sciences\",\"volume\":\"322 \",\"pages\":\"311-317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Engineering and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/ajeassp.2020.311.317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajeassp.2020.311.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在特征公式中提出了一种新的特征(补体特征),用于图像的全局阈值分割。目标是找到一个强度或灰度值,在它下面是背景,而在它上面是前景(对象)。图像中的每个像素由一个(2D)单位向量表示,其中x分量是像素的归一化(到[0,1]或[-1,1])强度,而y分量是它的补(例如欧几里得L2-Norm)。然后可以构造相关矩阵来找到相互关系、特征向量(惯性轴)和特征值(各自尺寸的描述)。对前面提到的三个类别中的每一个都提出了几种实现来执行图像阈值分割。有趣的是,一些建议的实现不需要穷举搜索,可以获得直接的解决方案。与著名的Otsu方法进行比较,结果表明该方法在大范围的图像上是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Thresholding Using the Complement Feature
A new feature (the complement feature) is proposed in an Eigen formulations for performing global image thresholding. The goal is to find an intensity or gray-level value below which is the background while above it is the foreground (object). Each pixel in the image is represented by a (2D) unit vector where the x-component is the normalized (to [0,1] or [-1,1]) intensity of the pixel, while the y-component is its complement (e.g., Euclidian L2-Norm). The correlation matrix can then constructed to find the cross-correlation, Eigen vectors (axes of inertia) and Eigen values (description of respective sizes). Several implementations for each of the three previously mentioned categories are proposed to perform image thresholding. Interestingly, some of the proposed implementations do not require exhaustive search and a direct solution can be obtained. The results are promising on a wide range of images as demonstrated by comparison with the well-known Otsu method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信