提高恒负荷孤岛直流微电网的稳定性

S. Murtaza, N. Siddique, Javaid Aslam, Waqas Latif, M. Wasif, Iftikhar Hussain
{"title":"提高恒负荷孤岛直流微电网的稳定性","authors":"S. Murtaza, N. Siddique, Javaid Aslam, Waqas Latif, M. Wasif, Iftikhar Hussain","doi":"10.3390/engproc2021012011","DOIUrl":null,"url":null,"abstract":"The AC power system is leading due to its established standards. The depleting thread of fossil fuels, the significant increase in cost and the alarming environmental situation raises concerns. An Islanded DC microgrid, due to its novel characteristics of being able to withstand faulty conditions, has increased the reliability, accuracy, ease of integration, and efficiency of the power system. Renewable energy sources, characteristically DC, have wide usability in a distributive network and, accordingly, less circuitry and conversion stages are required, eliminating the need of reactive power compensation and frequency sync. Constant power loads (CPLs) are the reason for instability in the DC microgrid. Various centralized stability techniques have been proposed in the literature; however, the grid system collapses if there is a fault. To compensate, an efficient distributive control architecture, i.e., droop control method is proposed in this research. The significant advantage of using the droop control technique includes easy implementation, high reliability and flexibility, a reduced circulating current, a decentralized control with local measurements, the absence of a communication link and, thus, it is economic. Moreover, it offers local control for each individual power source in the microgrid. To investigate the stability of the islanded DC microgrid with constant power loads using the droop control technique, a small signal model of the islanded DC microgrid was developed in MATLAB/Simulink. Simulations were carried out to show the efficiency of the proposed controller and analyze the stability of the power system with constant power loads.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the Stability of Islanded DC Microgrid with Constant Power Loads\",\"authors\":\"S. Murtaza, N. Siddique, Javaid Aslam, Waqas Latif, M. Wasif, Iftikhar Hussain\",\"doi\":\"10.3390/engproc2021012011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AC power system is leading due to its established standards. The depleting thread of fossil fuels, the significant increase in cost and the alarming environmental situation raises concerns. An Islanded DC microgrid, due to its novel characteristics of being able to withstand faulty conditions, has increased the reliability, accuracy, ease of integration, and efficiency of the power system. Renewable energy sources, characteristically DC, have wide usability in a distributive network and, accordingly, less circuitry and conversion stages are required, eliminating the need of reactive power compensation and frequency sync. Constant power loads (CPLs) are the reason for instability in the DC microgrid. Various centralized stability techniques have been proposed in the literature; however, the grid system collapses if there is a fault. To compensate, an efficient distributive control architecture, i.e., droop control method is proposed in this research. The significant advantage of using the droop control technique includes easy implementation, high reliability and flexibility, a reduced circulating current, a decentralized control with local measurements, the absence of a communication link and, thus, it is economic. Moreover, it offers local control for each individual power source in the microgrid. To investigate the stability of the islanded DC microgrid with constant power loads using the droop control technique, a small signal model of the islanded DC microgrid was developed in MATLAB/Simulink. Simulations were carried out to show the efficiency of the proposed controller and analyze the stability of the power system with constant power loads.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2021012011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交流电源系统具有一定的标准,处于领先地位。化石燃料的枯竭、成本的大幅增加和令人担忧的环境状况令人担忧。孤岛式直流微电网由于其能够承受故障条件的新特性,提高了电力系统的可靠性、准确性、易于集成和效率。以直流为特征的可再生能源在配电网中具有广泛的可用性,因此,所需的电路和转换阶段较少,从而消除了无功补偿和频率同步的需要。恒功率负荷是造成直流微电网不稳定的主要原因。文献中提出了各种集中稳定技术;但是,如果出现故障,电网系统就会崩溃。为此,本文提出了一种高效的分布式控制体系结构——下垂控制方法。使用下垂控制技术的显著优点包括易于实现,高可靠性和灵活性,减少循环电流,局部测量的分散控制,不需要通信链路,因此,它是经济的。此外,它还为微电网中的每个单独电源提供本地控制。为了研究恒功率负载下孤岛直流微电网的下垂控制稳定性,在MATLAB/Simulink中建立了孤岛直流微电网的小信号模型。通过仿真验证了所提控制器的有效性,并分析了恒负荷下电力系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Stability of Islanded DC Microgrid with Constant Power Loads
The AC power system is leading due to its established standards. The depleting thread of fossil fuels, the significant increase in cost and the alarming environmental situation raises concerns. An Islanded DC microgrid, due to its novel characteristics of being able to withstand faulty conditions, has increased the reliability, accuracy, ease of integration, and efficiency of the power system. Renewable energy sources, characteristically DC, have wide usability in a distributive network and, accordingly, less circuitry and conversion stages are required, eliminating the need of reactive power compensation and frequency sync. Constant power loads (CPLs) are the reason for instability in the DC microgrid. Various centralized stability techniques have been proposed in the literature; however, the grid system collapses if there is a fault. To compensate, an efficient distributive control architecture, i.e., droop control method is proposed in this research. The significant advantage of using the droop control technique includes easy implementation, high reliability and flexibility, a reduced circulating current, a decentralized control with local measurements, the absence of a communication link and, thus, it is economic. Moreover, it offers local control for each individual power source in the microgrid. To investigate the stability of the islanded DC microgrid with constant power loads using the droop control technique, a small signal model of the islanded DC microgrid was developed in MATLAB/Simulink. Simulations were carried out to show the efficiency of the proposed controller and analyze the stability of the power system with constant power loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信