异紫质:一种被低估的视觉色素类似物

Colorants Pub Date : 2022-06-23 DOI:10.3390/colorants1030016
W. D. de Grip, J. Lugtenburg
{"title":"异紫质:一种被低估的视觉色素类似物","authors":"W. D. de Grip, J. Lugtenburg","doi":"10.3390/colorants1030016","DOIUrl":null,"url":null,"abstract":"Rhodopsin, the first visual pigment identified in the animal retina, was shown to be a photosensitive membrane protein containing covalently bound retinal in the 11-cis configuration, as a chromophore. Upon photoexcitation the chromophore isomerizes in femtoseconds to all-trans, which drives the protein into the active state. Soon thereafter, another geometric isomer—9-cis retinal—was also shown to stably incorporate into the binding pocket, generating a slightly blue-shifted photosensitive protein. This pigment, coined isorhodopsin, was less photosensitive, but could also reach the active state. However, 9-cis retinal was not detected as a chromophore in any of the many animal visual pigments studied, and isorhodopsin was passed over as an exotic and little-relevant rhodopsin analog. Consequently, few in-depth studies of its photochemistry and activation mechanism have been performed. In this review, we aim to illustrate that it is unfortunate that isorhodopsin has received little attention in the visual research and literature. Elementary differences in photoexcitation of rhodopsin and isorhodopsin have already been reported. Further in-depth studies of the photochemical properties and pathways of isorhodopsin would be quite enlightening for the initial steps in vision, as well as being beneficial for biotechnological applications of retinal proteins.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"300 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Isorhodopsin: An Undervalued Visual Pigment Analog\",\"authors\":\"W. D. de Grip, J. Lugtenburg\",\"doi\":\"10.3390/colorants1030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhodopsin, the first visual pigment identified in the animal retina, was shown to be a photosensitive membrane protein containing covalently bound retinal in the 11-cis configuration, as a chromophore. Upon photoexcitation the chromophore isomerizes in femtoseconds to all-trans, which drives the protein into the active state. Soon thereafter, another geometric isomer—9-cis retinal—was also shown to stably incorporate into the binding pocket, generating a slightly blue-shifted photosensitive protein. This pigment, coined isorhodopsin, was less photosensitive, but could also reach the active state. However, 9-cis retinal was not detected as a chromophore in any of the many animal visual pigments studied, and isorhodopsin was passed over as an exotic and little-relevant rhodopsin analog. Consequently, few in-depth studies of its photochemistry and activation mechanism have been performed. In this review, we aim to illustrate that it is unfortunate that isorhodopsin has received little attention in the visual research and literature. Elementary differences in photoexcitation of rhodopsin and isorhodopsin have already been reported. Further in-depth studies of the photochemical properties and pathways of isorhodopsin would be quite enlightening for the initial steps in vision, as well as being beneficial for biotechnological applications of retinal proteins.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"300 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants1030016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants1030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视紫红质是在动物视网膜中发现的第一种视觉色素,是一种光敏膜蛋白,其共价结合的视网膜呈11顺式结构,是一种发色团。在光激发下,发色团在飞秒内异构成全反式,这驱使蛋白质进入活性状态。不久之后,另一种几何异构体- 9-顺式视黄醛-也被证明稳定地结合到结合口袋中,产生了轻微的蓝移光敏蛋白。这种色素被称为异视紫红质,它的光敏性较差,但也能达到活性状态。然而,在研究的许多动物视觉色素中,没有发现9-顺式视网膜是一种发色团,异视紫红质被认为是一种外来的、不太相关的视紫红质类似物。因此,对其光化学和活化机理的深入研究很少。在这篇综述中,我们的目的是说明它是不幸的,异视紫红质在视觉研究和文献中很少受到关注。视紫红质和异视紫红质在光激发方面的基本差异已被报道。进一步深入研究异视紫红质的光化学性质和途径,对视力的初步研究具有重要的启示意义,也有利于视网膜蛋白的生物技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isorhodopsin: An Undervalued Visual Pigment Analog
Rhodopsin, the first visual pigment identified in the animal retina, was shown to be a photosensitive membrane protein containing covalently bound retinal in the 11-cis configuration, as a chromophore. Upon photoexcitation the chromophore isomerizes in femtoseconds to all-trans, which drives the protein into the active state. Soon thereafter, another geometric isomer—9-cis retinal—was also shown to stably incorporate into the binding pocket, generating a slightly blue-shifted photosensitive protein. This pigment, coined isorhodopsin, was less photosensitive, but could also reach the active state. However, 9-cis retinal was not detected as a chromophore in any of the many animal visual pigments studied, and isorhodopsin was passed over as an exotic and little-relevant rhodopsin analog. Consequently, few in-depth studies of its photochemistry and activation mechanism have been performed. In this review, we aim to illustrate that it is unfortunate that isorhodopsin has received little attention in the visual research and literature. Elementary differences in photoexcitation of rhodopsin and isorhodopsin have already been reported. Further in-depth studies of the photochemical properties and pathways of isorhodopsin would be quite enlightening for the initial steps in vision, as well as being beneficial for biotechnological applications of retinal proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信