P. King, K. Miller, N. Lemos, J. Shaw, B. Frances Kraus, M. Thibodeau, B. Hegelich, J. Hinojosa, P. Michel, C. Joshi, K. Marsh, W. Mori, A. Pak, A. Thomas, F. Albert
{"title":"低密度自调制尾流场加速器中直接激光加速对高能电子能谱的主要贡献","authors":"P. King, K. Miller, N. Lemos, J. Shaw, B. Frances Kraus, M. Thibodeau, B. Hegelich, J. Hinojosa, P. Michel, C. Joshi, K. Marsh, W. Mori, A. Pak, A. Thomas, F. Albert","doi":"10.1103/PHYSREVACCELBEAMS.24.011302","DOIUrl":null,"url":null,"abstract":"The two-temperature relativistic electron spectrum from a low-density ($3\\times10^{17}$~cm$^{-3}$) self-modulated laser wakefield accelerator (SM-LWFA) is observed to transition between temperatures of $19\\pm0.65$ and $46\\pm2.45$ MeV at an electron energy of about 100 MeV. When the electrons are dispersed orthogonally to the laser polarization, their spectrum above 60 MeV shows a forking structure characteristic of direct laser acceleration (DLA). Both the two-temperature distribution and the forking structure are reproduced in a quasi-3D \\textsc{Osiris} simulation of the interaction of the 1-ps, moderate-amplitude ($a_{0}=2.7$) laser pulse with the low-density plasma. Particle tracking shows that while the SM-LWFA mechanism dominates below 40 MeV, the highest-energy ($>60$ MeV) electrons gain most of their energy through DLA. By separating the simulated electric fields into modes, the DLA-dominated electrons are shown to lose significant energy to the longitudinal laser field from the tight focusing geometry, resulting in a more accurate measure of net DLA energy gain than previously possible.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predominant contribution of direct laser acceleration to high-energy electron spectra in a low-density self-modulated laser wakefield accelerator\",\"authors\":\"P. King, K. Miller, N. Lemos, J. Shaw, B. Frances Kraus, M. Thibodeau, B. Hegelich, J. Hinojosa, P. Michel, C. Joshi, K. Marsh, W. Mori, A. Pak, A. Thomas, F. Albert\",\"doi\":\"10.1103/PHYSREVACCELBEAMS.24.011302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-temperature relativistic electron spectrum from a low-density ($3\\\\times10^{17}$~cm$^{-3}$) self-modulated laser wakefield accelerator (SM-LWFA) is observed to transition between temperatures of $19\\\\pm0.65$ and $46\\\\pm2.45$ MeV at an electron energy of about 100 MeV. When the electrons are dispersed orthogonally to the laser polarization, their spectrum above 60 MeV shows a forking structure characteristic of direct laser acceleration (DLA). Both the two-temperature distribution and the forking structure are reproduced in a quasi-3D \\\\textsc{Osiris} simulation of the interaction of the 1-ps, moderate-amplitude ($a_{0}=2.7$) laser pulse with the low-density plasma. Particle tracking shows that while the SM-LWFA mechanism dominates below 40 MeV, the highest-energy ($>60$ MeV) electrons gain most of their energy through DLA. By separating the simulated electric fields into modes, the DLA-dominated electrons are shown to lose significant energy to the longitudinal laser field from the tight focusing geometry, resulting in a more accurate measure of net DLA energy gain than previously possible.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVACCELBEAMS.24.011302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVACCELBEAMS.24.011302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
在低密度($3\times10^{17}$ cm $^{-3}$)激光尾流场自调制加速器(SM-LWFA)中,观察到电子能量约为100 MeV时,两温相对论电子能谱在$19\pm0.65$和$46\pm2.45$ MeV之间跃迁。当电子与激光偏振方向正交分散时,其60 MeV以上的光谱呈现直接激光加速(DLA)的分叉结构特征。在准三维\textsc{Osiris}模拟中再现了1-ps、中等振幅($a_{0}=2.7$)激光脉冲与低密度等离子体相互作用的双温分布和分叉结构。粒子跟踪表明,虽然SM-LWFA机制在40 MeV以下占主导地位,但最高能量($>60$ MeV)的电子通过DLA获得大部分能量。通过将模拟电场分离成模式,DLA主导的电子显示出从紧密聚焦几何形状的纵向激光场损失大量能量,从而比以前可能更准确地测量净DLA能量增益。
Predominant contribution of direct laser acceleration to high-energy electron spectra in a low-density self-modulated laser wakefield accelerator
The two-temperature relativistic electron spectrum from a low-density ($3\times10^{17}$~cm$^{-3}$) self-modulated laser wakefield accelerator (SM-LWFA) is observed to transition between temperatures of $19\pm0.65$ and $46\pm2.45$ MeV at an electron energy of about 100 MeV. When the electrons are dispersed orthogonally to the laser polarization, their spectrum above 60 MeV shows a forking structure characteristic of direct laser acceleration (DLA). Both the two-temperature distribution and the forking structure are reproduced in a quasi-3D \textsc{Osiris} simulation of the interaction of the 1-ps, moderate-amplitude ($a_{0}=2.7$) laser pulse with the low-density plasma. Particle tracking shows that while the SM-LWFA mechanism dominates below 40 MeV, the highest-energy ($>60$ MeV) electrons gain most of their energy through DLA. By separating the simulated electric fields into modes, the DLA-dominated electrons are shown to lose significant energy to the longitudinal laser field from the tight focusing geometry, resulting in a more accurate measure of net DLA energy gain than previously possible.