{"title":"通过使用3D和RGB相机数据为社交机器人添加对象操作功能","authors":"G. Mezzina, D. Venuto","doi":"10.1109/SENSORS47087.2021.9639608","DOIUrl":null,"url":null,"abstract":"This paper outlines the design and implementation of novel object manipulation for a social robot, here Pepper by SoftBank Robotics. It is primarily designed for verbal interaction and has therefore not been equipped with object manipulation capabilities. The proposed routine exploits the built-in RGB and 3D cameras. First, semantic segmentation based on the Mini-YOLOv3 neural network is run on the RGB image. Next, 3D sensor data are used to position the hand over the object, implementing a novel routine to grab the object and to scan it for recognition purposes. To preserve patient and location sensitive data, the here-proposed architecture operates automatically and offline, running on the robot’s operating system. Experimental results on 370 grabbing processes showed how the manipulation routine achieves a grabbing success rate of up to 96%. They also proved that the success rate remains unaltered if the target object is positioned in a rectangular area of ± 6 cm × ± 3 cm centered in the nominal position provided by an initial positioning grid. The grabbing success rate remains above 80% even if the object to be grabbed is stored with an angle that ranges between 10° and 45° within the above-reported area.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"707 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding Object Manipulation Capabilities to Social Robots by using 3D and RGB Cameras Data\",\"authors\":\"G. Mezzina, D. Venuto\",\"doi\":\"10.1109/SENSORS47087.2021.9639608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the design and implementation of novel object manipulation for a social robot, here Pepper by SoftBank Robotics. It is primarily designed for verbal interaction and has therefore not been equipped with object manipulation capabilities. The proposed routine exploits the built-in RGB and 3D cameras. First, semantic segmentation based on the Mini-YOLOv3 neural network is run on the RGB image. Next, 3D sensor data are used to position the hand over the object, implementing a novel routine to grab the object and to scan it for recognition purposes. To preserve patient and location sensitive data, the here-proposed architecture operates automatically and offline, running on the robot’s operating system. Experimental results on 370 grabbing processes showed how the manipulation routine achieves a grabbing success rate of up to 96%. They also proved that the success rate remains unaltered if the target object is positioned in a rectangular area of ± 6 cm × ± 3 cm centered in the nominal position provided by an initial positioning grid. The grabbing success rate remains above 80% even if the object to be grabbed is stored with an angle that ranges between 10° and 45° within the above-reported area.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"707 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adding Object Manipulation Capabilities to Social Robots by using 3D and RGB Cameras Data
This paper outlines the design and implementation of novel object manipulation for a social robot, here Pepper by SoftBank Robotics. It is primarily designed for verbal interaction and has therefore not been equipped with object manipulation capabilities. The proposed routine exploits the built-in RGB and 3D cameras. First, semantic segmentation based on the Mini-YOLOv3 neural network is run on the RGB image. Next, 3D sensor data are used to position the hand over the object, implementing a novel routine to grab the object and to scan it for recognition purposes. To preserve patient and location sensitive data, the here-proposed architecture operates automatically and offline, running on the robot’s operating system. Experimental results on 370 grabbing processes showed how the manipulation routine achieves a grabbing success rate of up to 96%. They also proved that the success rate remains unaltered if the target object is positioned in a rectangular area of ± 6 cm × ± 3 cm centered in the nominal position provided by an initial positioning grid. The grabbing success rate remains above 80% even if the object to be grabbed is stored with an angle that ranges between 10° and 45° within the above-reported area.