{"title":"使用胶子质量作为调节器的渐近自由","authors":"J. Gálvez-Viruet, M. Gómez-Rocha","doi":"10.1051/epjconf/202227402006","DOIUrl":null,"url":null,"abstract":"Front-Form Hamiltonian dynamics provides a framework in which QCD’s vacuum is simple and states are boost invariant. However, canonical expressions are divergent and must be regulated in order to establish well-defined eigenvalue problems. The Renormalization Group Procedure for Effective Particles (RGPEP) provides a systematic way of finding counterterms and obtaining regulated Hamiltonians. Among its achievements is the description of asymptotic freedom, with a running coupling constant defined as the coefficient in front of the three gluon-vertex operators in the regulated Hamiltonian. However, the obtained results need a deeper understanding, since the coupling exhibits a finite dependence on the regularization functions, at least at the third-order term in the perturbative expansion. Here we present a similar derivation using a different regularization scheme based on massive gluons. The procedure can be extended to incorporate contributions from virtual fermions.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"247 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic freedom using a gluon mass as a regulator\",\"authors\":\"J. Gálvez-Viruet, M. Gómez-Rocha\",\"doi\":\"10.1051/epjconf/202227402006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Front-Form Hamiltonian dynamics provides a framework in which QCD’s vacuum is simple and states are boost invariant. However, canonical expressions are divergent and must be regulated in order to establish well-defined eigenvalue problems. The Renormalization Group Procedure for Effective Particles (RGPEP) provides a systematic way of finding counterterms and obtaining regulated Hamiltonians. Among its achievements is the description of asymptotic freedom, with a running coupling constant defined as the coefficient in front of the three gluon-vertex operators in the regulated Hamiltonian. However, the obtained results need a deeper understanding, since the coupling exhibits a finite dependence on the regularization functions, at least at the third-order term in the perturbative expansion. Here we present a similar derivation using a different regularization scheme based on massive gluons. The procedure can be extended to incorporate contributions from virtual fermions.\",\"PeriodicalId\":11731,\"journal\":{\"name\":\"EPJ Web of Conferences\",\"volume\":\"247 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/202227402006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202227402006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic freedom using a gluon mass as a regulator
Front-Form Hamiltonian dynamics provides a framework in which QCD’s vacuum is simple and states are boost invariant. However, canonical expressions are divergent and must be regulated in order to establish well-defined eigenvalue problems. The Renormalization Group Procedure for Effective Particles (RGPEP) provides a systematic way of finding counterterms and obtaining regulated Hamiltonians. Among its achievements is the description of asymptotic freedom, with a running coupling constant defined as the coefficient in front of the three gluon-vertex operators in the regulated Hamiltonian. However, the obtained results need a deeper understanding, since the coupling exhibits a finite dependence on the regularization functions, at least at the third-order term in the perturbative expansion. Here we present a similar derivation using a different regularization scheme based on massive gluons. The procedure can be extended to incorporate contributions from virtual fermions.