通过智能胶体微机器人群在迷宫中捕获布朗货物

Kun Xu, Yuguang Yang, Bo Li
{"title":"通过智能胶体微机器人群在迷宫中捕获布朗货物","authors":"Kun Xu, Yuguang Yang, Bo Li","doi":"10.1002/aisy.202100115","DOIUrl":null,"url":null,"abstract":"Intelligent microrobot systems at the microscopic scale provide enormous opportunities for emerging biomedical and environmental applications. Herein, a multiagent stochastic feedback control framework to control colloidal microrobot swarms for capturing Brownian cargo particles in complex environments such as mazes is proposed. The decision‐making module in the control framework consists of the adaptive generation of target sites surrounding the cargo, optimal target assignment, and approximate motion planning. The stochastic trajectories of robot swarms are efficiently navigated toward their exclusively assigned target around the cargo particle and enable the cargo to be captured. The capture strategy realized by the control framework is robust, adaptive, and flexible in that it accommodates diverse local geometries in the vicinity of a cargo, swarm, and maze sizes and is able to spontaneously split the workforce to catch multiple Brownian cargo particles via multitasking. The present intelligent robot swarm enabled by the multiagent control offers a path to realize complex functions at the microscopic scale in a resilient and flexible manner.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"21 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Brownian Cargo Capture in Mazes via Intelligent Colloidal Microrobot Swarms\",\"authors\":\"Kun Xu, Yuguang Yang, Bo Li\",\"doi\":\"10.1002/aisy.202100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent microrobot systems at the microscopic scale provide enormous opportunities for emerging biomedical and environmental applications. Herein, a multiagent stochastic feedback control framework to control colloidal microrobot swarms for capturing Brownian cargo particles in complex environments such as mazes is proposed. The decision‐making module in the control framework consists of the adaptive generation of target sites surrounding the cargo, optimal target assignment, and approximate motion planning. The stochastic trajectories of robot swarms are efficiently navigated toward their exclusively assigned target around the cargo particle and enable the cargo to be captured. The capture strategy realized by the control framework is robust, adaptive, and flexible in that it accommodates diverse local geometries in the vicinity of a cargo, swarm, and maze sizes and is able to spontaneously split the workforce to catch multiple Brownian cargo particles via multitasking. The present intelligent robot swarm enabled by the multiagent control offers a path to realize complex functions at the microscopic scale in a resilient and flexible manner.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"21 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

微观尺度的智能微型机器人系统为新兴的生物医学和环境应用提供了巨大的机会。为此,提出了一种多智能体随机反馈控制框架,用于控制胶体微机器人在迷宫等复杂环境中捕获布朗货物颗粒。控制框架中的决策模块包括货物周围目标位置的自适应生成、最优目标分配和近似运动规划。机器人群的随机轨迹有效地导航到它们在货物粒子周围的唯一指定目标,并使货物能够被捕获。控制框架实现的捕获策略具有鲁棒性、适应性和灵活性,因为它可以适应货物、群体和迷宫大小附近的不同局部几何形状,并且能够自发地拆分劳动力,通过多任务处理捕获多个布朗货物颗粒。基于多智能体控制的智能机器人群为在微观尺度上以弹性和柔性的方式实现复杂功能提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brownian Cargo Capture in Mazes via Intelligent Colloidal Microrobot Swarms
Intelligent microrobot systems at the microscopic scale provide enormous opportunities for emerging biomedical and environmental applications. Herein, a multiagent stochastic feedback control framework to control colloidal microrobot swarms for capturing Brownian cargo particles in complex environments such as mazes is proposed. The decision‐making module in the control framework consists of the adaptive generation of target sites surrounding the cargo, optimal target assignment, and approximate motion planning. The stochastic trajectories of robot swarms are efficiently navigated toward their exclusively assigned target around the cargo particle and enable the cargo to be captured. The capture strategy realized by the control framework is robust, adaptive, and flexible in that it accommodates diverse local geometries in the vicinity of a cargo, swarm, and maze sizes and is able to spontaneously split the workforce to catch multiple Brownian cargo particles via multitasking. The present intelligent robot swarm enabled by the multiagent control offers a path to realize complex functions at the microscopic scale in a resilient and flexible manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信