非自治常微分方程新非标准差分格式的推导

E. Ibijola, A. Obayomi
{"title":"非自治常微分方程新非标准差分格式的推导","authors":"E. Ibijola, A. Obayomi","doi":"10.5251/AJSIR.2012.3.3.122.127","DOIUrl":null,"url":null,"abstract":"In this paper we derive Non-standard finite difference schemes for the solution of some IVPs emanating from non-autonomous Ordinary Differential Equation. A new technique based on the method of Non–local approximation and renormalization of the denominator function was employed. Numerical experiments were used to verify the reliability of the new Finite Difference schemes proposed for the IVPs and the results obtained shows that the schemes are computationally reliable.","PeriodicalId":7661,"journal":{"name":"American Journal of Scientific and Industrial Research","volume":"134 ","pages":"122-127"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Derivation of New Non-Standard Finite Difference Schemes for Non-autonomous Ordinary Differential equation\",\"authors\":\"E. Ibijola, A. Obayomi\",\"doi\":\"10.5251/AJSIR.2012.3.3.122.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive Non-standard finite difference schemes for the solution of some IVPs emanating from non-autonomous Ordinary Differential Equation. A new technique based on the method of Non–local approximation and renormalization of the denominator function was employed. Numerical experiments were used to verify the reliability of the new Finite Difference schemes proposed for the IVPs and the results obtained shows that the schemes are computationally reliable.\",\"PeriodicalId\":7661,\"journal\":{\"name\":\"American Journal of Scientific and Industrial Research\",\"volume\":\"134 \",\"pages\":\"122-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Scientific and Industrial Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5251/AJSIR.2012.3.3.122.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Scientific and Industrial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5251/AJSIR.2012.3.3.122.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文导出了一类由非自治常微分方程引起的随机微分问题的非标准有限差分格式。采用了一种基于非局部逼近和分母函数重整化的新方法。数值实验验证了所提出的有限差分格式的可靠性,结果表明所提格式在计算上是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of New Non-Standard Finite Difference Schemes for Non-autonomous Ordinary Differential equation
In this paper we derive Non-standard finite difference schemes for the solution of some IVPs emanating from non-autonomous Ordinary Differential Equation. A new technique based on the method of Non–local approximation and renormalization of the denominator function was employed. Numerical experiments were used to verify the reliability of the new Finite Difference schemes proposed for the IVPs and the results obtained shows that the schemes are computationally reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信