{"title":"聚类土耳其语文档的语义和单术语相似度度量的比较","authors":"Bülent Yücesoy, Ş. Öğüdücü","doi":"10.1109/ICMLA.2007.52","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the World Wide Web (www), it becomes a critical issue to design and organize the vast amounts of on-line documents on the web according to their topic. Even for the search engines it is very important to group similar documents in order to improve their performance when a query is submitted to the system. Clustering is useful for taxonomy design and similarity search of documents on such a domain. Similarity is fundamental to many clustering applications on hypertext. In this paper, we will study how measures of similarity are used to cluster a collection of documents on a web site. Most of the document clustering techniques rely on single term analysis of text, such as vector space model. To better group of related documents we propose a new semantic similarity measure. We compare our measure with Wu-Palmer similarity and cosine similarity. Experimental results show that cosine similarity perform better than the semantic similarities. We demonstrate our results on Turkish documents. This is a first study that considers the semantic similarities between Turkish documents.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"738 ","pages":"393-398"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of semantic and single term similarity measures for clustering turkish documents\",\"authors\":\"Bülent Yücesoy, Ş. Öğüdücü\",\"doi\":\"10.1109/ICMLA.2007.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of the World Wide Web (www), it becomes a critical issue to design and organize the vast amounts of on-line documents on the web according to their topic. Even for the search engines it is very important to group similar documents in order to improve their performance when a query is submitted to the system. Clustering is useful for taxonomy design and similarity search of documents on such a domain. Similarity is fundamental to many clustering applications on hypertext. In this paper, we will study how measures of similarity are used to cluster a collection of documents on a web site. Most of the document clustering techniques rely on single term analysis of text, such as vector space model. To better group of related documents we propose a new semantic similarity measure. We compare our measure with Wu-Palmer similarity and cosine similarity. Experimental results show that cosine similarity perform better than the semantic similarities. We demonstrate our results on Turkish documents. This is a first study that considers the semantic similarities between Turkish documents.\",\"PeriodicalId\":74528,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications\",\"volume\":\"738 \",\"pages\":\"393-398\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of semantic and single term similarity measures for clustering turkish documents
With the rapid growth of the World Wide Web (www), it becomes a critical issue to design and organize the vast amounts of on-line documents on the web according to their topic. Even for the search engines it is very important to group similar documents in order to improve their performance when a query is submitted to the system. Clustering is useful for taxonomy design and similarity search of documents on such a domain. Similarity is fundamental to many clustering applications on hypertext. In this paper, we will study how measures of similarity are used to cluster a collection of documents on a web site. Most of the document clustering techniques rely on single term analysis of text, such as vector space model. To better group of related documents we propose a new semantic similarity measure. We compare our measure with Wu-Palmer similarity and cosine similarity. Experimental results show that cosine similarity perform better than the semantic similarities. We demonstrate our results on Turkish documents. This is a first study that considers the semantic similarities between Turkish documents.