通过瓶颈进行采样和同调

S. Rocco, David Eklund, Oliver Gäfvert
{"title":"通过瓶颈进行采样和同调","authors":"S. Rocco, David Eklund, Oliver Gäfvert","doi":"10.1090/mcom/3757","DOIUrl":null,"url":null,"abstract":"In this paper we present an efficient algorithm to produce a provably dense sample of a smooth compact variety. The procedure is partly based on computing $\\textit{bottlenecks}$ of the variety. Using geometric information such as the bottlenecks and the $\\textit{local reach}$ we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample. An implementation of the algorithm is provided together with numerical experiments and a computational comparison to the algorithm by Dufresne et. al.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"89 ","pages":"2969-2995"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sampling and homology via bottlenecks\",\"authors\":\"S. Rocco, David Eklund, Oliver Gäfvert\",\"doi\":\"10.1090/mcom/3757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an efficient algorithm to produce a provably dense sample of a smooth compact variety. The procedure is partly based on computing $\\\\textit{bottlenecks}$ of the variety. Using geometric information such as the bottlenecks and the $\\\\textit{local reach}$ we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample. An implementation of the algorithm is provided together with numerical experiments and a computational comparison to the algorithm by Dufresne et. al.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"89 \",\"pages\":\"2969-2995\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种有效的算法来产生光滑紧变的可证明稠密样本。这个过程部分是基于计算$\textit{bottlenecks}$的变化。利用瓶颈和$\textit{local reach}$等几何信息,我们还提供了所需样品密度的界限,以保证可以从样品中恢复品种的同源性。文中给出了该算法的实现,并进行了数值实验和Dufresne等人对该算法的计算比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling and homology via bottlenecks
In this paper we present an efficient algorithm to produce a provably dense sample of a smooth compact variety. The procedure is partly based on computing $\textit{bottlenecks}$ of the variety. Using geometric information such as the bottlenecks and the $\textit{local reach}$ we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample. An implementation of the algorithm is provided together with numerical experiments and a computational comparison to the algorithm by Dufresne et. al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信