Outguard:在野外检测浏览器内隐蔽的加密货币挖掘

Amin Kharraz, Zane Ma, Paul Murley, Chaz Lever, Joshua Mason, Andrew K. Miller, N. Borisov, M. Antonakakis, Michael Bailey
{"title":"Outguard:在野外检测浏览器内隐蔽的加密货币挖掘","authors":"Amin Kharraz, Zane Ma, Paul Murley, Chaz Lever, Joshua Mason, Andrew K. Miller, N. Borisov, M. Antonakakis, Michael Bailey","doi":"10.1145/3308558.3313665","DOIUrl":null,"url":null,"abstract":"In-browser cryptojacking is a form of resource abuse that leverages end-users' machines to mine cryptocurrency without obtaining the users' consent. In this paper, we design, implement, and evaluate Outguard, an automated cryptojacking detection system. We construct a large ground-truth dataset, extract several features using an instrumented web browser, and ultimately select seven distinctive features that are used to build an SVM classification model. Outguardachieves a 97.9% TPR and 1.1% FPR and is reasonably tolerant to adversarial evasions. We utilized Outguardin the wild by deploying it across the Alexa Top 1M websites and found 6,302 cryptojacking sites, of which 3,600 are new detections that were absent from the training data. These cryptojacking sites paint a broad picture of the cryptojacking ecosystem, with particular emphasis on the prevalence of cryptojacking websites and the shared infrastructure that provides clues to the operators behind the cryptojacking phenomenon.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"56 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Outguard: Detecting In-Browser Covert Cryptocurrency Mining in the Wild\",\"authors\":\"Amin Kharraz, Zane Ma, Paul Murley, Chaz Lever, Joshua Mason, Andrew K. Miller, N. Borisov, M. Antonakakis, Michael Bailey\",\"doi\":\"10.1145/3308558.3313665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-browser cryptojacking is a form of resource abuse that leverages end-users' machines to mine cryptocurrency without obtaining the users' consent. In this paper, we design, implement, and evaluate Outguard, an automated cryptojacking detection system. We construct a large ground-truth dataset, extract several features using an instrumented web browser, and ultimately select seven distinctive features that are used to build an SVM classification model. Outguardachieves a 97.9% TPR and 1.1% FPR and is reasonably tolerant to adversarial evasions. We utilized Outguardin the wild by deploying it across the Alexa Top 1M websites and found 6,302 cryptojacking sites, of which 3,600 are new detections that were absent from the training data. These cryptojacking sites paint a broad picture of the cryptojacking ecosystem, with particular emphasis on the prevalence of cryptojacking websites and the shared infrastructure that provides clues to the operators behind the cryptojacking phenomenon.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"56 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

浏览器内加密劫持是一种资源滥用形式,它利用最终用户的机器在未经用户同意的情况下挖掘加密货币。在本文中,我们设计,实现和评估了Outguard,一个自动加密劫持检测系统。我们构建了一个大型的真实数据集,使用仪器化的web浏览器提取几个特征,并最终选择七个不同的特征用于构建支持向量机分类模型。outguard达到97.9%的TPR和1.1%的FPR,对对抗性规避有一定的容受性。我们利用Outguardin将其部署在Alexa排名前100万的网站上,发现了6302个加密劫持网站,其中3600个是训练数据中缺失的新检测。这些加密劫持网站描绘了加密劫持生态系统的广阔图景,特别强调了加密劫持网站的流行和共享基础设施,这些基础设施为加密劫持现象背后的运营商提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outguard: Detecting In-Browser Covert Cryptocurrency Mining in the Wild
In-browser cryptojacking is a form of resource abuse that leverages end-users' machines to mine cryptocurrency without obtaining the users' consent. In this paper, we design, implement, and evaluate Outguard, an automated cryptojacking detection system. We construct a large ground-truth dataset, extract several features using an instrumented web browser, and ultimately select seven distinctive features that are used to build an SVM classification model. Outguardachieves a 97.9% TPR and 1.1% FPR and is reasonably tolerant to adversarial evasions. We utilized Outguardin the wild by deploying it across the Alexa Top 1M websites and found 6,302 cryptojacking sites, of which 3,600 are new detections that were absent from the training data. These cryptojacking sites paint a broad picture of the cryptojacking ecosystem, with particular emphasis on the prevalence of cryptojacking websites and the shared infrastructure that provides clues to the operators behind the cryptojacking phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信