集值平衡问题e -全局固有有效解的标化及最优性条件

Zhiang Zhou, Min Kuang
{"title":"集值平衡问题e -全局固有有效解的标化及最优性条件","authors":"Zhiang Zhou, Min Kuang","doi":"10.1142/s0217595922500099","DOIUrl":null,"url":null,"abstract":"In this paper, our purpose is to use the improvement set to investigate the scalarization and optimality conditions of [Formula: see text]-globally proper efficient solution for the set-valued equilibrium problems with constraints. First, the notion of [Formula: see text]-globally proper efficient solution for set-valued equilibrium problems with constraints is introduced in locally convex Hausdorff topological spaces. Second, the linear scalarization theorems of [Formula: see text]-globally proper efficient solution are derived. Finally, under the assumption of nearly [Formula: see text]-subconvexlikeness, the Kuhn–Tucker and Lagrange optimality conditions for set-valued equilibrium problems with constraints are obtained in the sense of [Formula: see text]-globally proper efficiency. Meanwhile, we give some examples to illustrate our results. The results obtained in this paper improve and generalize some known results in the literature.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"7 10","pages":"2250009:1-2250009:16"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalarization and Optimality Conditions of E-Globally Proper Efficient Solution for Set-Valued Equilibrium Problems\",\"authors\":\"Zhiang Zhou, Min Kuang\",\"doi\":\"10.1142/s0217595922500099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our purpose is to use the improvement set to investigate the scalarization and optimality conditions of [Formula: see text]-globally proper efficient solution for the set-valued equilibrium problems with constraints. First, the notion of [Formula: see text]-globally proper efficient solution for set-valued equilibrium problems with constraints is introduced in locally convex Hausdorff topological spaces. Second, the linear scalarization theorems of [Formula: see text]-globally proper efficient solution are derived. Finally, under the assumption of nearly [Formula: see text]-subconvexlikeness, the Kuhn–Tucker and Lagrange optimality conditions for set-valued equilibrium problems with constraints are obtained in the sense of [Formula: see text]-globally proper efficiency. Meanwhile, we give some examples to illustrate our results. The results obtained in this paper improve and generalize some known results in the literature.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":\"7 10\",\"pages\":\"2250009:1-2250009:16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595922500099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922500099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们的目的是利用改进集来研究[公式:见文]-具有约束的集值平衡问题的全局适当有效解的标化和最优性条件。首先,在局部凸Hausdorff拓扑空间中引入了具有约束的集值平衡问题的全局固有有效解的概念。其次,导出了[公式:见文]全局固有有效解的线性标化定理。最后,在近似[公式:见文]-次凸似的假设下,在[公式:见文]-全局固有效率的意义上,得到了带约束的集值均衡问题的Kuhn-Tucker和Lagrange最优性条件。同时,我们给出了一些例子来说明我们的结果。本文的结果改进和推广了文献中一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalarization and Optimality Conditions of E-Globally Proper Efficient Solution for Set-Valued Equilibrium Problems
In this paper, our purpose is to use the improvement set to investigate the scalarization and optimality conditions of [Formula: see text]-globally proper efficient solution for the set-valued equilibrium problems with constraints. First, the notion of [Formula: see text]-globally proper efficient solution for set-valued equilibrium problems with constraints is introduced in locally convex Hausdorff topological spaces. Second, the linear scalarization theorems of [Formula: see text]-globally proper efficient solution are derived. Finally, under the assumption of nearly [Formula: see text]-subconvexlikeness, the Kuhn–Tucker and Lagrange optimality conditions for set-valued equilibrium problems with constraints are obtained in the sense of [Formula: see text]-globally proper efficiency. Meanwhile, we give some examples to illustrate our results. The results obtained in this paper improve and generalize some known results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信