分支群的通约性增长

K. Bou-Rabee, Rachel Skipper, Daniel Studenmund
{"title":"分支群的通约性增长","authors":"K. Bou-Rabee, Rachel Skipper, Daniel Studenmund","doi":"10.2140/pjm.2020.304.43","DOIUrl":null,"url":null,"abstract":"Fixing a subgroup $\\Gamma$ in a group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $\\Delta$ of $G$ with $[\\Gamma: \\Gamma \\cap \\Delta][\\Delta : \\Gamma \\cap \\Delta] = n$. For pairs $\\Gamma \\leq A$, where $A$ is the automorphism group of a $p$-regular tree and $\\Gamma$ is finitely generated, we show that this function can take on finite, countable, or uncountable cardinals. For almost all known branch groups $\\Gamma$ (the first Grigorchuk group, the twisted twin Grigorchuk group, Pervova groups, Gupta-Sidki groups, etc.) acting on $p$-regular trees, this function is precisely $\\aleph_0$ for any $n = p^k$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"11 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Commensurability growth of branch groups\",\"authors\":\"K. Bou-Rabee, Rachel Skipper, Daniel Studenmund\",\"doi\":\"10.2140/pjm.2020.304.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixing a subgroup $\\\\Gamma$ in a group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $\\\\Delta$ of $G$ with $[\\\\Gamma: \\\\Gamma \\\\cap \\\\Delta][\\\\Delta : \\\\Gamma \\\\cap \\\\Delta] = n$. For pairs $\\\\Gamma \\\\leq A$, where $A$ is the automorphism group of a $p$-regular tree and $\\\\Gamma$ is finitely generated, we show that this function can take on finite, countable, or uncountable cardinals. For almost all known branch groups $\\\\Gamma$ (the first Grigorchuk group, the twisted twin Grigorchuk group, Pervova groups, Gupta-Sidki groups, etc.) acting on $p$-regular trees, this function is precisely $\\\\aleph_0$ for any $n = p^k$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"11 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2020.304.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2020.304.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在一个组$G$中固定一个子组$\Gamma$,可通约性增长函数将$G$的子组集合$\Delta$的基数与$[\Gamma: \Gamma \cap \Delta][\Delta : \Gamma \cap \Delta] = n$分配给每个$n$。对于对$\Gamma \leq A$,其中$A$是$p$ -正则树的自同构群,并且$\Gamma$是有限生成的,我们证明该函数可以采用有限的、可数的或不可数的基数。对于几乎所有已知的分支群$\Gamma$(第一个Grigorchuk群,扭曲双胞胎Grigorchuk群,Pervova群,Gupta-Sidki群,等等)作用于$p$正则树,这个函数对于任何$n = p^k$都是$\aleph_0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commensurability growth of branch groups
Fixing a subgroup $\Gamma$ in a group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $\Delta$ of $G$ with $[\Gamma: \Gamma \cap \Delta][\Delta : \Gamma \cap \Delta] = n$. For pairs $\Gamma \leq A$, where $A$ is the automorphism group of a $p$-regular tree and $\Gamma$ is finitely generated, we show that this function can take on finite, countable, or uncountable cardinals. For almost all known branch groups $\Gamma$ (the first Grigorchuk group, the twisted twin Grigorchuk group, Pervova groups, Gupta-Sidki groups, etc.) acting on $p$-regular trees, this function is precisely $\aleph_0$ for any $n = p^k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信