一类保守型limedard方程的周期解

4open Pub Date : 2019-01-01 DOI:10.1051/FOPEN/2019003
E. R. Korfanty, Ankai Liu, W. Feng
{"title":"一类保守型limedard方程的周期解","authors":"E. R. Korfanty, Ankai Liu, W. Feng","doi":"10.1051/FOPEN/2019003","DOIUrl":null,"url":null,"abstract":"In this paper, we study solvability of a class of second-order differential equations in a conservative Liénard form subject to periodic boundary conditions. Results on existence of non-trivial T-periodic solutions or positive T-periodic solutions are obtained respectively. Applications of the theorems are shown by examples. The results are proved by applying the coincidence degree theory for semilinear operator equations.","PeriodicalId":6841,"journal":{"name":"4open","volume":"45 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solutions for a class of conservative Liénard-type equations\",\"authors\":\"E. R. Korfanty, Ankai Liu, W. Feng\",\"doi\":\"10.1051/FOPEN/2019003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study solvability of a class of second-order differential equations in a conservative Liénard form subject to periodic boundary conditions. Results on existence of non-trivial T-periodic solutions or positive T-periodic solutions are obtained respectively. Applications of the theorems are shown by examples. The results are proved by applying the coincidence degree theory for semilinear operator equations.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"45 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/FOPEN/2019003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/FOPEN/2019003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类二阶微分方程在周期边界条件下的守恒lisamadard形式的可解性。分别得到了非平凡t周期解和正t周期解的存在性。通过实例说明了这些定理的应用。应用重合度理论对半线性算子方程进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solutions for a class of conservative Liénard-type equations
In this paper, we study solvability of a class of second-order differential equations in a conservative Liénard form subject to periodic boundary conditions. Results on existence of non-trivial T-periodic solutions or positive T-periodic solutions are obtained respectively. Applications of the theorems are shown by examples. The results are proved by applying the coincidence degree theory for semilinear operator equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信