{"title":"用于热脉冲实验的空间分辨探测器","authors":"D. Hurley, G. Hardy, P. Hawker, A. Kent","doi":"10.1088/0022-3735/22/10/004","DOIUrl":null,"url":null,"abstract":"A new technique for spatially resolved detection of heat pulses (phonons) at liquid-helium temperatures is described. Unlike existing phonon imaging methods, this system is not affected by the presence of magnetic fields up to at least 7 T. The method utilises a spatially extended cadmium sulphide thin film as a phonon bolometer. Small (<200 mu m) regions of the film are selectively sensitised by a microcomputer-controlled, scanned laser spot and 'reset' after data acquisition using a large ( approximately=50 mA) current pulse. Using data acquisition and analysis software, line scans of the transmitted phonon intensity as a function of propagation direction are obtained. Sample data of the phonon intensity in the (110) plane of silicon are presented.","PeriodicalId":16791,"journal":{"name":"Journal of Physics E: Scientific Instruments","volume":"5 3","pages":"824-827"},"PeriodicalIF":0.0000,"publicationDate":"1989-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A spatially resolving detector for heat-pulse experiments\",\"authors\":\"D. Hurley, G. Hardy, P. Hawker, A. Kent\",\"doi\":\"10.1088/0022-3735/22/10/004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new technique for spatially resolved detection of heat pulses (phonons) at liquid-helium temperatures is described. Unlike existing phonon imaging methods, this system is not affected by the presence of magnetic fields up to at least 7 T. The method utilises a spatially extended cadmium sulphide thin film as a phonon bolometer. Small (<200 mu m) regions of the film are selectively sensitised by a microcomputer-controlled, scanned laser spot and 'reset' after data acquisition using a large ( approximately=50 mA) current pulse. Using data acquisition and analysis software, line scans of the transmitted phonon intensity as a function of propagation direction are obtained. Sample data of the phonon intensity in the (110) plane of silicon are presented.\",\"PeriodicalId\":16791,\"journal\":{\"name\":\"Journal of Physics E: Scientific Instruments\",\"volume\":\"5 3\",\"pages\":\"824-827\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics E: Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0022-3735/22/10/004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics E: Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0022-3735/22/10/004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A spatially resolving detector for heat-pulse experiments
A new technique for spatially resolved detection of heat pulses (phonons) at liquid-helium temperatures is described. Unlike existing phonon imaging methods, this system is not affected by the presence of magnetic fields up to at least 7 T. The method utilises a spatially extended cadmium sulphide thin film as a phonon bolometer. Small (<200 mu m) regions of the film are selectively sensitised by a microcomputer-controlled, scanned laser spot and 'reset' after data acquisition using a large ( approximately=50 mA) current pulse. Using data acquisition and analysis software, line scans of the transmitted phonon intensity as a function of propagation direction are obtained. Sample data of the phonon intensity in the (110) plane of silicon are presented.