动态纹理表示的综合分类

Thanh Tuan Nguyen, T. Nguyen
{"title":"动态纹理表示的综合分类","authors":"Thanh Tuan Nguyen, T. Nguyen","doi":"10.1145/3487892","DOIUrl":null,"url":null,"abstract":"Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"11 6","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comprehensive Taxonomy of Dynamic Texture Representation\",\"authors\":\"Thanh Tuan Nguyen, T. Nguyen\",\"doi\":\"10.1145/3487892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"11 6\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

动态纹理表示在计算机视觉领域的许多实际实现中起着重要的作用。由于dt的湍流和非定向运动以及不同因素(例如环境变化,噪声,照明等)的负面影响,有效分析dt对最先进的方法提出了相当大的挑战。20年来,为了提高性能,已经引入了许多不同的技术来处理上述众所周知的问题。这些方法已经显示出有价值的贡献,但是问题还没有完全解决,特别是在大规模数据集上识别dt。在本文中,我们提出了DT表示的综合分类,以便有目的地对现有方法进行全面概述,并对其获得的性能进行全面评估。因此,我们将这些方法分为六个典型的类别。然后对它们中的每一个进行简要介绍,介绍其主要方法流和各种相关变体。然后,对最先进的方法的有效性水平进行调查,并就基准数据集上对dt进行分类的定量和定性评估进行彻底讨论。最后,我们指出了几个潜在的应用和应该在进一步的方向上解决的剩余挑战。与现有的两个浅DT调查(即,第一个调查于2005年发布,已经过时,而较新的调查(2016年发布)是一个不充分的概述)相比,我们认为我们提出的综合分类不仅为目标读者提供了更好的DT表示视图,而且还激发了未来的研究活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Taxonomy of Dynamic Texture Representation
Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信