利用迁移学习提高群体MARL训练效率的研究

Seulgi Yi, Kwon-il Kim, Suk-Whoan Yoon
{"title":"利用迁移学习提高群体MARL训练效率的研究","authors":"Seulgi Yi, Kwon-il Kim, Suk-Whoan Yoon","doi":"10.9766/kimst.2023.26.4.361","DOIUrl":null,"url":null,"abstract":"Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL’s scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning\",\"authors\":\"Seulgi Yi, Kwon-il Kim, Suk-Whoan Yoon\",\"doi\":\"10.9766/kimst.2023.26.4.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL’s scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.\",\"PeriodicalId\":17292,\"journal\":{\"name\":\"Journal of the Korea Institute of Military Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Institute of Military Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9766/kimst.2023.26.4.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2023.26.4.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蜂群最近已经成为进攻和防御系统的重要组成部分。多智能体强化学习(MARL)使群系统能够处理各种场景。然而,主要的挑战在于MARL的可扩展性问题——随着智能体数量的增加,学习的性能会下降。本研究将迁移学习应用于高级MARL算法,以解决可扩展性问题。验证结果表明,训练效率显著提高,计算时间减少31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning
Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL’s scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信