电沉积纳米晶镍合金的超塑性键合

G. Kaneyama, Y. Takigawa
{"title":"电沉积纳米晶镍合金的超塑性键合","authors":"G. Kaneyama, Y. Takigawa","doi":"10.2320/jinstmet.j2022007","DOIUrl":null,"url":null,"abstract":"Superplastic bonding was performed using electrodeposited Ni and electrodeposited Ni – B to apply to low – temperature di ff usion bonding of carbon steel. Electrodeposited Ni and Ni – B were bonded at 450 ℃ in air and at a strain rate of 1 × 10 − 4 s − 1 . The shear test measured the bond strength, and the maximum bond strength of 69MPa was obtained. Since the obtained bonding strength at 450 ℃ is comparable to that obtained by di ff usion bonding of carbon steel at 0.5 T m , it is possible to decrease the bonding temperature to 0.4 T m by applying this boning process. The bonding strength depended on the amount of strain and increased as the strain increased in the range of strain 0.2 to 0.4. The voids at the interface shrink by superplastic deformation with grain boundary sliding, and the bonded area increases. In the superplastic bonding of electrodeposited Ni alloys, superplastic deformation e ff ectively shrinks voids with a radius of 1 – 2µm. [ doi:10.2320 / jinstmet.J2022007 ]","PeriodicalId":17322,"journal":{"name":"Journal of the Japan Institute of Metals and Materials","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superplastic Bonding of Electrodeposited Nanocrystalline Ni Alloys\",\"authors\":\"G. Kaneyama, Y. Takigawa\",\"doi\":\"10.2320/jinstmet.j2022007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superplastic bonding was performed using electrodeposited Ni and electrodeposited Ni – B to apply to low – temperature di ff usion bonding of carbon steel. Electrodeposited Ni and Ni – B were bonded at 450 ℃ in air and at a strain rate of 1 × 10 − 4 s − 1 . The shear test measured the bond strength, and the maximum bond strength of 69MPa was obtained. Since the obtained bonding strength at 450 ℃ is comparable to that obtained by di ff usion bonding of carbon steel at 0.5 T m , it is possible to decrease the bonding temperature to 0.4 T m by applying this boning process. The bonding strength depended on the amount of strain and increased as the strain increased in the range of strain 0.2 to 0.4. The voids at the interface shrink by superplastic deformation with grain boundary sliding, and the bonded area increases. In the superplastic bonding of electrodeposited Ni alloys, superplastic deformation e ff ectively shrinks voids with a radius of 1 – 2µm. [ doi:10.2320 / jinstmet.J2022007 ]\",\"PeriodicalId\":17322,\"journal\":{\"name\":\"Journal of the Japan Institute of Metals and Materials\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Institute of Metals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2320/jinstmet.j2022007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Institute of Metals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/jinstmet.j2022007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用电沉积Ni和电沉积Ni - B进行超塑性粘接,应用于碳钢的低温扩散粘接。电沉积Ni和Ni - B在450℃空气中以1 × 10−4 s−1的应变速率键合。剪切试验测定了粘结强度,得到最大粘结强度为69MPa。由于在450℃下得到的键合强度与碳钢在0.5 T m下的扩散键合强度相当,因此采用这种焊接工艺可以将键合温度降低到0.4 T m。结合强度与应变大小有关,在应变0.2 ~ 0.4范围内随应变的增大而增大。界面处的孔洞随着晶界的滑动发生超塑性变形而缩小,结合面积增大。在电沉积镍合金的超塑性结合中,超塑性变形可以有效地缩小半径为1 ~ 2 μ m的空隙。[doi:10.2320 / jinstmet.]J2022007]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superplastic Bonding of Electrodeposited Nanocrystalline Ni Alloys
Superplastic bonding was performed using electrodeposited Ni and electrodeposited Ni – B to apply to low – temperature di ff usion bonding of carbon steel. Electrodeposited Ni and Ni – B were bonded at 450 ℃ in air and at a strain rate of 1 × 10 − 4 s − 1 . The shear test measured the bond strength, and the maximum bond strength of 69MPa was obtained. Since the obtained bonding strength at 450 ℃ is comparable to that obtained by di ff usion bonding of carbon steel at 0.5 T m , it is possible to decrease the bonding temperature to 0.4 T m by applying this boning process. The bonding strength depended on the amount of strain and increased as the strain increased in the range of strain 0.2 to 0.4. The voids at the interface shrink by superplastic deformation with grain boundary sliding, and the bonded area increases. In the superplastic bonding of electrodeposited Ni alloys, superplastic deformation e ff ectively shrinks voids with a radius of 1 – 2µm. [ doi:10.2320 / jinstmet.J2022007 ]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信