{"title":"为可靠的路边基础设施优化传感器位置","authors":"Florian Geissler, Ralf Graefe","doi":"10.1109/ITSC.2019.8917197","DOIUrl":null,"url":null,"abstract":"We present a multi-stage optimization method for efficient sensor deployment in traffic surveillance scenarios. Based on a genetic optimization scheme, our algorithm places an optimal number of roadside sensors to obtain full road coverage in the presence of obstacles and dynamic occlusions. The efficiency of the procedure is demonstrated for selected, realistic road sections. Our analysis helps to leverage the economic feasibility of distributed infrastructure sensor networks with high perception quality.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"15 6","pages":"2408-2413"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimized sensor placement for dependable roadside infrastructures\",\"authors\":\"Florian Geissler, Ralf Graefe\",\"doi\":\"10.1109/ITSC.2019.8917197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multi-stage optimization method for efficient sensor deployment in traffic surveillance scenarios. Based on a genetic optimization scheme, our algorithm places an optimal number of roadside sensors to obtain full road coverage in the presence of obstacles and dynamic occlusions. The efficiency of the procedure is demonstrated for selected, realistic road sections. Our analysis helps to leverage the economic feasibility of distributed infrastructure sensor networks with high perception quality.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"15 6\",\"pages\":\"2408-2413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized sensor placement for dependable roadside infrastructures
We present a multi-stage optimization method for efficient sensor deployment in traffic surveillance scenarios. Based on a genetic optimization scheme, our algorithm places an optimal number of roadside sensors to obtain full road coverage in the presence of obstacles and dynamic occlusions. The efficiency of the procedure is demonstrated for selected, realistic road sections. Our analysis helps to leverage the economic feasibility of distributed infrastructure sensor networks with high perception quality.