Zi Ee Lee, Raphael Liang Hui Chua, S. Keoh, Y. Ohba
{"title":"面向物联网-区块链应用的边缘大数据处理性能评估","authors":"Zi Ee Lee, Raphael Liang Hui Chua, S. Keoh, Y. Ohba","doi":"10.1109/GLOBECOM38437.2019.9013329","DOIUrl":null,"url":null,"abstract":"Internet-of-Things (IoT) utilising sensors is effective in performing continuous monitoring, while Blockchain is ideal in guaranteeing integrity and immutability of these IoT data. There are many challenges in integrating IoT and Blockchain together mainly because IoT devices have limited computational resources, and storage capacity while Blockchain processing incurs high CPU cost and high latency in data transfer. We propose a fully distributed edge computing architecture coupled with an efficient storage system that is based on Non-Volatile Memory express Over Fabrics (NVMeOF) to provide efficient IoT data processing for supply chain management. The data is secured using Blockchain at the edge to ensure traceability, security and non-repudiation in the data. An evaluation of our implementation and performance comparison between NVMeOF and SATA storage interfaces for our IoT-Blockchain architecture is presented.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"10 15","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance Evaluation of Big Data Processing at the Edge for IoT-Blockchain Applications\",\"authors\":\"Zi Ee Lee, Raphael Liang Hui Chua, S. Keoh, Y. Ohba\",\"doi\":\"10.1109/GLOBECOM38437.2019.9013329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet-of-Things (IoT) utilising sensors is effective in performing continuous monitoring, while Blockchain is ideal in guaranteeing integrity and immutability of these IoT data. There are many challenges in integrating IoT and Blockchain together mainly because IoT devices have limited computational resources, and storage capacity while Blockchain processing incurs high CPU cost and high latency in data transfer. We propose a fully distributed edge computing architecture coupled with an efficient storage system that is based on Non-Volatile Memory express Over Fabrics (NVMeOF) to provide efficient IoT data processing for supply chain management. The data is secured using Blockchain at the edge to ensure traceability, security and non-repudiation in the data. An evaluation of our implementation and performance comparison between NVMeOF and SATA storage interfaces for our IoT-Blockchain architecture is presented.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"10 15\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9013329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Evaluation of Big Data Processing at the Edge for IoT-Blockchain Applications
Internet-of-Things (IoT) utilising sensors is effective in performing continuous monitoring, while Blockchain is ideal in guaranteeing integrity and immutability of these IoT data. There are many challenges in integrating IoT and Blockchain together mainly because IoT devices have limited computational resources, and storage capacity while Blockchain processing incurs high CPU cost and high latency in data transfer. We propose a fully distributed edge computing architecture coupled with an efficient storage system that is based on Non-Volatile Memory express Over Fabrics (NVMeOF) to provide efficient IoT data processing for supply chain management. The data is secured using Blockchain at the edge to ensure traceability, security and non-repudiation in the data. An evaluation of our implementation and performance comparison between NVMeOF and SATA storage interfaces for our IoT-Blockchain architecture is presented.