面向网络防御的机器学习算法比较研究

Abdinur Ali, Y. Hu, C. Hsieh, Mushtaq Khan
{"title":"面向网络防御的机器学习算法比较研究","authors":"Abdinur Ali, Y. Hu, C. Hsieh, Mushtaq Khan","doi":"10.25778/PEXS-2309","DOIUrl":null,"url":null,"abstract":"Network security specialists use machine learning algorithms to detect computer network attacks and prevent unauthorized access to their networks. Traditionally, signature and anomaly detection techniques have been used for network defense. However, detection techniques must adapt to keep pace with continuously changing security attacks. Therefore, machine learning algorithms always learn from experience and are appropriate tools for this adaptation. In this paper, ten machine learning algorithms were trained with the KDD99 dataset with labels, then they were tested with different dataset without labels. The researchers investigate the speed and the efficiency of these machine learning algorithms in terms of several selected benchmarks such as time to build models, kappa statistic, root mean squared error, accuracy by attack class, and percentage of correctly classified instances of the classifier algorithms.","PeriodicalId":23516,"journal":{"name":"Virginia journal of science","volume":"91 4","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study on Machine Learning Algorithms for Network Defense\",\"authors\":\"Abdinur Ali, Y. Hu, C. Hsieh, Mushtaq Khan\",\"doi\":\"10.25778/PEXS-2309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network security specialists use machine learning algorithms to detect computer network attacks and prevent unauthorized access to their networks. Traditionally, signature and anomaly detection techniques have been used for network defense. However, detection techniques must adapt to keep pace with continuously changing security attacks. Therefore, machine learning algorithms always learn from experience and are appropriate tools for this adaptation. In this paper, ten machine learning algorithms were trained with the KDD99 dataset with labels, then they were tested with different dataset without labels. The researchers investigate the speed and the efficiency of these machine learning algorithms in terms of several selected benchmarks such as time to build models, kappa statistic, root mean squared error, accuracy by attack class, and percentage of correctly classified instances of the classifier algorithms.\",\"PeriodicalId\":23516,\"journal\":{\"name\":\"Virginia journal of science\",\"volume\":\"91 4\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virginia journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25778/PEXS-2309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virginia journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25778/PEXS-2309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study on Machine Learning Algorithms for Network Defense
Network security specialists use machine learning algorithms to detect computer network attacks and prevent unauthorized access to their networks. Traditionally, signature and anomaly detection techniques have been used for network defense. However, detection techniques must adapt to keep pace with continuously changing security attacks. Therefore, machine learning algorithms always learn from experience and are appropriate tools for this adaptation. In this paper, ten machine learning algorithms were trained with the KDD99 dataset with labels, then they were tested with different dataset without labels. The researchers investigate the speed and the efficiency of these machine learning algorithms in terms of several selected benchmarks such as time to build models, kappa statistic, root mean squared error, accuracy by attack class, and percentage of correctly classified instances of the classifier algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信