{"title":"基于上下文的科学文献资源引文分类框架","authors":"He Zhao, Zhunchen Luo, Chong Feng, Yuming Ye","doi":"10.1145/3331184.3331348","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the task of resource citation classification for scientific literature using a context-based framework. This task is to analyze the purpose of citing an on-line resource in scientific text by modeling the role and function of each resource citation. It can be incorporated into resource indexing and recommendation systems to help better understand and classify on-line resources in scientific literature. We propose a new annotation scheme for this task and develop a dataset of 3,088 manually annotated resource citations. We adopt a neural-based model to build the classifiers and apply them on the large ARC dataset to examine the revolution of scientific resources from trends in their function over time.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Context-based Framework for Resource Citation Classification in Scientific Literatures\",\"authors\":\"He Zhao, Zhunchen Luo, Chong Feng, Yuming Ye\",\"doi\":\"10.1145/3331184.3331348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the task of resource citation classification for scientific literature using a context-based framework. This task is to analyze the purpose of citing an on-line resource in scientific text by modeling the role and function of each resource citation. It can be incorporated into resource indexing and recommendation systems to help better understand and classify on-line resources in scientific literature. We propose a new annotation scheme for this task and develop a dataset of 3,088 manually annotated resource citations. We adopt a neural-based model to build the classifiers and apply them on the large ARC dataset to examine the revolution of scientific resources from trends in their function over time.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Context-based Framework for Resource Citation Classification in Scientific Literatures
In this paper, we introduce the task of resource citation classification for scientific literature using a context-based framework. This task is to analyze the purpose of citing an on-line resource in scientific text by modeling the role and function of each resource citation. It can be incorporated into resource indexing and recommendation systems to help better understand and classify on-line resources in scientific literature. We propose a new annotation scheme for this task and develop a dataset of 3,088 manually annotated resource citations. We adopt a neural-based model to build the classifiers and apply them on the large ARC dataset to examine the revolution of scientific resources from trends in their function over time.