声波和膜倾角对渗透微生物燃料电池性能的影响

Mandar S. Bhagat, Arvind K. Mungray, Alka A. Mungray
{"title":"声波和膜倾角对渗透微生物燃料电池性能的影响","authors":"Mandar S. Bhagat,&nbsp;Arvind K. Mungray,&nbsp;Alka A. Mungray","doi":"10.1016/j.wen.2021.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to explore the effect of the sound wave and membrane inclination i.e., 45° and 90° (MI45 and MI90) on the performance of osmotic microbial fuel cell (OMFC). The vibrations were given by a sound intensity of 60–80 dB and 20–1000 Hz in an anode compartment for a period of 5–6 h per day. Membrane inclination was given to maximizing the effective surface area under a fixed plane without changing its volumetric capacity to enhance water flux. Membrane inclination increased the effective surface area up to 33.33%, therefore, water flux was increased by 10% by using 45° inclination. The OMFC produced maximum water flux, reverse salt flux and power density of 0.750 ± 0.02 and 0.666 ± 0.02 Lm<sup>-2</sup>h<sup>−1</sup>, 3.18 ± 0.02 and 3.10 ± 0.02 gm<sup>-2</sup>h<sup>−1</sup>, 35.22 ± 12 and 24.22 ± 08 mW.m<sup>−2</sup> for MI45 and MI90 respectively with the effect of sound. The chemical oxygen demand (COD) removal was found 66.85 ± 1% and 59.51 ± 1% with and without the effect of sound. Therefore, sound reduced the OMFC start-up time by 2–3 days based on open-circuit voltage data and also increased the anaerobic degradation by 6–9%. Overall, sound stimulates bacterial growth for the degradation of organic matter, and membrane inclination gives a more effective surface area for water flux.</p></div>","PeriodicalId":101279,"journal":{"name":"Water-Energy Nexus","volume":"4 ","pages":"Pages 113-122"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.wen.2021.07.003","citationCount":"4","resultStr":"{\"title\":\"Effect of sound waves and inclination of membrane on the performance of the osmotic microbial fuel cell\",\"authors\":\"Mandar S. Bhagat,&nbsp;Arvind K. Mungray,&nbsp;Alka A. Mungray\",\"doi\":\"10.1016/j.wen.2021.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to explore the effect of the sound wave and membrane inclination i.e., 45° and 90° (MI45 and MI90) on the performance of osmotic microbial fuel cell (OMFC). The vibrations were given by a sound intensity of 60–80 dB and 20–1000 Hz in an anode compartment for a period of 5–6 h per day. Membrane inclination was given to maximizing the effective surface area under a fixed plane without changing its volumetric capacity to enhance water flux. Membrane inclination increased the effective surface area up to 33.33%, therefore, water flux was increased by 10% by using 45° inclination. The OMFC produced maximum water flux, reverse salt flux and power density of 0.750 ± 0.02 and 0.666 ± 0.02 Lm<sup>-2</sup>h<sup>−1</sup>, 3.18 ± 0.02 and 3.10 ± 0.02 gm<sup>-2</sup>h<sup>−1</sup>, 35.22 ± 12 and 24.22 ± 08 mW.m<sup>−2</sup> for MI45 and MI90 respectively with the effect of sound. The chemical oxygen demand (COD) removal was found 66.85 ± 1% and 59.51 ± 1% with and without the effect of sound. Therefore, sound reduced the OMFC start-up time by 2–3 days based on open-circuit voltage data and also increased the anaerobic degradation by 6–9%. Overall, sound stimulates bacterial growth for the degradation of organic matter, and membrane inclination gives a more effective surface area for water flux.</p></div>\",\"PeriodicalId\":101279,\"journal\":{\"name\":\"Water-Energy Nexus\",\"volume\":\"4 \",\"pages\":\"Pages 113-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.wen.2021.07.003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water-Energy Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588912521000114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water-Energy Nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588912521000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究旨在探讨声波和膜倾角45°和90°(MI45和MI90)对渗透微生物燃料电池(OMFC)性能的影响。在阳极室中以60-80 dB和20-1000 Hz的声强振动,每天5-6小时。在不改变膜的体积容量的前提下,利用膜倾角使膜在固定平面下的有效表面积最大化,从而提高水通量。膜倾角可使有效表面积增加33.33%,因此,45°倾角可使水通量增加10%。OMFC产生的最大水通量、反盐通量和功率密度分别为0.750±0.02和0.666±0.02 Lm-2h−1、3.18±0.02和3.10±0.02 gm-2h−1、35.22±12和24.22±08 mW。m−2分别为MI45和MI90的声音效应。有无声音作用的化学需氧量(COD)去除率分别为66.85±1%和59.51±1%。因此,根据开路电压数据,声音使OMFC启动时间缩短了2-3天,并使厌氧降解率提高了6-9%。总的来说,声音刺激细菌生长以降解有机物,而膜的倾斜为水通量提供了更有效的表面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of sound waves and inclination of membrane on the performance of the osmotic microbial fuel cell

Effect of sound waves and inclination of membrane on the performance of the osmotic microbial fuel cell

This study aimed to explore the effect of the sound wave and membrane inclination i.e., 45° and 90° (MI45 and MI90) on the performance of osmotic microbial fuel cell (OMFC). The vibrations were given by a sound intensity of 60–80 dB and 20–1000 Hz in an anode compartment for a period of 5–6 h per day. Membrane inclination was given to maximizing the effective surface area under a fixed plane without changing its volumetric capacity to enhance water flux. Membrane inclination increased the effective surface area up to 33.33%, therefore, water flux was increased by 10% by using 45° inclination. The OMFC produced maximum water flux, reverse salt flux and power density of 0.750 ± 0.02 and 0.666 ± 0.02 Lm-2h−1, 3.18 ± 0.02 and 3.10 ± 0.02 gm-2h−1, 35.22 ± 12 and 24.22 ± 08 mW.m−2 for MI45 and MI90 respectively with the effect of sound. The chemical oxygen demand (COD) removal was found 66.85 ± 1% and 59.51 ± 1% with and without the effect of sound. Therefore, sound reduced the OMFC start-up time by 2–3 days based on open-circuit voltage data and also increased the anaerobic degradation by 6–9%. Overall, sound stimulates bacterial growth for the degradation of organic matter, and membrane inclination gives a more effective surface area for water flux.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信