{"title":"3流形是外来4流形的边界","authors":"John B. Etnyre, Hyunki Min, Anubhav Mukherjee","doi":"10.1090/tran/8586","DOIUrl":null,"url":null,"abstract":"We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifolds with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifolds that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"22 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On 3-manifolds that are boundaries of exotic 4-manifolds\",\"authors\":\"John B. Etnyre, Hyunki Min, Anubhav Mukherjee\",\"doi\":\"10.1090/tran/8586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifolds with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifolds that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"22 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On 3-manifolds that are boundaries of exotic 4-manifolds
We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifolds with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifolds that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.