3流形是外来4流形的边界

John B. Etnyre, Hyunki Min, Anubhav Mukherjee
{"title":"3流形是外来4流形的边界","authors":"John B. Etnyre, Hyunki Min, Anubhav Mukherjee","doi":"10.1090/tran/8586","DOIUrl":null,"url":null,"abstract":"We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifolds with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifolds that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"22 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On 3-manifolds that are boundaries of exotic 4-manifolds\",\"authors\":\"John B. Etnyre, Hyunki Min, Anubhav Mukherjee\",\"doi\":\"10.1090/tran/8586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifolds with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifolds that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"22 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们给出了关于一个封闭的,定向的3-流形的几个准则,这将意味着它是一个(单连通)4-流形的边界,它允许无限多个不同的光滑结构。我们还证明了任何弱可填充接触3流形,或具有非消失Heegaard花不变量的接触3流形,都是一个单连通4流形的边界,该单连通4流形允许无限多个不同的光滑结构,每个光滑结构都支持一个具有凹边界的辛结构,即对于任何这样的接触流形存在无限多个奇异帽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On 3-manifolds that are boundaries of exotic 4-manifolds
We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifolds with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifolds that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信