teichm ller理论中的全纯二次微分

Subhojoy Gupta
{"title":"teichm<s:1> ller理论中的全纯二次微分","authors":"Subhojoy Gupta","doi":"10.4171/203-1/4","DOIUrl":null,"url":null,"abstract":"This expository survey describes how holomorphic quadratic differentials arise in several aspects of Teichm\\\"uller theory, highlighting their relation with various geometric structures on surfaces. The final section summarizes results for non-compact surfaces of finite type, when the quadratic differential has poles of finite order at the punctures.","PeriodicalId":12912,"journal":{"name":"Handbook of Teichmüller Theory, Volume VII","volume":"100 S397","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Holomorphic quadratic differentials in Teichmüller theory\",\"authors\":\"Subhojoy Gupta\",\"doi\":\"10.4171/203-1/4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This expository survey describes how holomorphic quadratic differentials arise in several aspects of Teichm\\\\\\\"uller theory, highlighting their relation with various geometric structures on surfaces. The final section summarizes results for non-compact surfaces of finite type, when the quadratic differential has poles of finite order at the punctures.\",\"PeriodicalId\":12912,\"journal\":{\"name\":\"Handbook of Teichmüller Theory, Volume VII\",\"volume\":\"100 S397\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Teichmüller Theory, Volume VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/203-1/4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Teichmüller Theory, Volume VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/203-1/4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文阐述了全纯二次微分是如何在Teichm\ \ uller理论的几个方面出现的,突出了它们与曲面上各种几何结构的关系。最后一节总结了有限型非紧曲面的结果,当二次微分在点处具有有限阶极点时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic quadratic differentials in Teichmüller theory
This expository survey describes how holomorphic quadratic differentials arise in several aspects of Teichm\"uller theory, highlighting their relation with various geometric structures on surfaces. The final section summarizes results for non-compact surfaces of finite type, when the quadratic differential has poles of finite order at the punctures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信