{"title":"teichm<s:1> ller理论中的全纯二次微分","authors":"Subhojoy Gupta","doi":"10.4171/203-1/4","DOIUrl":null,"url":null,"abstract":"This expository survey describes how holomorphic quadratic differentials arise in several aspects of Teichm\\\"uller theory, highlighting their relation with various geometric structures on surfaces. The final section summarizes results for non-compact surfaces of finite type, when the quadratic differential has poles of finite order at the punctures.","PeriodicalId":12912,"journal":{"name":"Handbook of Teichmüller Theory, Volume VII","volume":"100 S397","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Holomorphic quadratic differentials in Teichmüller theory\",\"authors\":\"Subhojoy Gupta\",\"doi\":\"10.4171/203-1/4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This expository survey describes how holomorphic quadratic differentials arise in several aspects of Teichm\\\\\\\"uller theory, highlighting their relation with various geometric structures on surfaces. The final section summarizes results for non-compact surfaces of finite type, when the quadratic differential has poles of finite order at the punctures.\",\"PeriodicalId\":12912,\"journal\":{\"name\":\"Handbook of Teichmüller Theory, Volume VII\",\"volume\":\"100 S397\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Teichmüller Theory, Volume VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/203-1/4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Teichmüller Theory, Volume VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/203-1/4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Holomorphic quadratic differentials in Teichmüller theory
This expository survey describes how holomorphic quadratic differentials arise in several aspects of Teichm\"uller theory, highlighting their relation with various geometric structures on surfaces. The final section summarizes results for non-compact surfaces of finite type, when the quadratic differential has poles of finite order at the punctures.