数据驱动的超密集飞基站功率控制:基于聚类的方法

Li-Chun Wang, Shao-Hung Cheng, Ang-Hsun Tsai
{"title":"数据驱动的超密集飞基站功率控制:基于聚类的方法","authors":"Li-Chun Wang, Shao-Hung Cheng, Ang-Hsun Tsai","doi":"10.1109/WOCC.2017.7928996","DOIUrl":null,"url":null,"abstract":"In this paper we present a data-driven power control (DDPC) approach to improve total cell throughput and energy efficiency of ultra-dense femtocells. Although femtocells can increase the capacity and coverage in an indoor environment, ultra-dense femtocells may consume a lot of energy and generate severe interference. We investigate a data-driven clustering approach to reduce co-tier interference among femtocells in a dense deployment scenario. The proposed DDPC approach periodically collects the operation data of dense femtocells, including reference signal received power (RSRP) from each user, the transmission power and the number of users per femtocell, and so on. The collected data are processed via the affinity propagation (AP) clustering algorithm to determine the cluster centers to perform power control. The AP clustering algorithm can automatically determine appropriate the number of clusters and the corresponding cluster centers for various femtocell densities. Simulation results show that the proposed DDPC approach can increase 41% higher total cell throughput and 64% higher energy efficiency respectively, compared to the approach without power control in the ultra-dense femtocells.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":" 28","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Data-driven power control of ultra-dense femtocells: A clustering based approach\",\"authors\":\"Li-Chun Wang, Shao-Hung Cheng, Ang-Hsun Tsai\",\"doi\":\"10.1109/WOCC.2017.7928996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a data-driven power control (DDPC) approach to improve total cell throughput and energy efficiency of ultra-dense femtocells. Although femtocells can increase the capacity and coverage in an indoor environment, ultra-dense femtocells may consume a lot of energy and generate severe interference. We investigate a data-driven clustering approach to reduce co-tier interference among femtocells in a dense deployment scenario. The proposed DDPC approach periodically collects the operation data of dense femtocells, including reference signal received power (RSRP) from each user, the transmission power and the number of users per femtocell, and so on. The collected data are processed via the affinity propagation (AP) clustering algorithm to determine the cluster centers to perform power control. The AP clustering algorithm can automatically determine appropriate the number of clusters and the corresponding cluster centers for various femtocell densities. Simulation results show that the proposed DDPC approach can increase 41% higher total cell throughput and 64% higher energy efficiency respectively, compared to the approach without power control in the ultra-dense femtocells.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":\" 28\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7928996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7928996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种数据驱动的功率控制(DDPC)方法来提高超密集飞蜂窝的总吞吐量和能量效率。虽然飞蜂窝可以在室内环境中增加容量和覆盖范围,但超密集的飞蜂窝可能会消耗大量能量并产生严重的干扰。我们研究了一种数据驱动的聚类方法,以减少密集部署场景中飞基站之间的协同层干扰。提出的DDPC方法周期性地采集密集飞蜂窝的运行数据,包括来自每个用户的参考信号接收功率(RSRP)、每个飞蜂窝的发射功率和用户数等。通过亲和传播(affinity propagation, AP)聚类算法对收集到的数据进行处理,确定集群中心以执行功率控制。AP聚类算法可以根据不同的蜂窝密度自动确定合适的簇数和相应的簇中心。仿真结果表明,与不加功率控制的方法相比,提出的DDPC方法在超密集飞蜂窝中总吞吐量和能量效率分别提高了41%和64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven power control of ultra-dense femtocells: A clustering based approach
In this paper we present a data-driven power control (DDPC) approach to improve total cell throughput and energy efficiency of ultra-dense femtocells. Although femtocells can increase the capacity and coverage in an indoor environment, ultra-dense femtocells may consume a lot of energy and generate severe interference. We investigate a data-driven clustering approach to reduce co-tier interference among femtocells in a dense deployment scenario. The proposed DDPC approach periodically collects the operation data of dense femtocells, including reference signal received power (RSRP) from each user, the transmission power and the number of users per femtocell, and so on. The collected data are processed via the affinity propagation (AP) clustering algorithm to determine the cluster centers to perform power control. The AP clustering algorithm can automatically determine appropriate the number of clusters and the corresponding cluster centers for various femtocell densities. Simulation results show that the proposed DDPC approach can increase 41% higher total cell throughput and 64% higher energy efficiency respectively, compared to the approach without power control in the ultra-dense femtocells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信